N.V. Chemicals (Aust) P/L Chemwatch: 24-9182 Version No: 5.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements # Chemwatch Hazard Alert Code: 3 Issue Date: **10/03/2023** Print Date: **14/07/2023** L.GHS.AUS.EN.E #### SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | Citraclean | |-------------------------------|---| | Chemical Name | Not Applicable | | Synonyms | Not Available | | Proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains d-limonene) | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses All purpose cleaner. #### Details of the manufacturer or supplier of the safety data sheet | Registered company name | N.V. Chemicals (Aust) P/L | | | |-------------------------|---|--|--| | Address | 24 Lisa Place Coolaroo VIC 3048 Australia | | | | Telephone | +61 3 9351 1100 | | | | Fax | +61 3 9351 1077 | | | | Website | http://www.nvchemicals.com.au/ | | | | Email | info@nvchemicals.com.au | | | #### Emergency telephone number | Association / Organisation | N.V.Chemicals(Aust) P/L | |-----------------------------------|-------------------------| | Emergency telephone numbers | 0411 387 097 | | Other emergency telephone numbers | Not Available | # **SECTION 2 Hazards identification** #### Classification of the substance or mixture # HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. # Chemwatch Hazard Ratings | | • | | | |--------------|-----|-----|-------------------------| | | Min | Max | | | Flammability | 0 | | | | Toxicity | 2 | | 0 = Minimum | | Body Contact | 3 | i i | 1 = Low | | Reactivity | 0 | | 2 = Moderate | | Chronic | 2 | | 3 = High
4 = Extreme | | Poisons Schedule | | |------------------|--| | | | S Classification [1] Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Reproductive Toxicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 2, Hazardous to the Aquatic Environment Acute Hazard Category 3, Hazardous to the Aquatic Issue Date: **10/03/2023**Print Date: **14/07/2023** Citraclean Environment Long-Term Hazard Category 2 Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI #### Label elements #### Hazard pictogram(s) Signal word Danger #### Hazard statement(s) | H302 | Harmful if swallowed. | |--------|--| | H315 | Causes skin irritation. | | H317 | May cause an allergic skin reaction. | | H318 (| Causes serious eye damage. | | H336 | May cause drowsiness or dizziness. | | H361fd | Suspected of damaging fertility. Suspected of damaging the unborn child. | | H373 | May cause damage to organs through prolonged or repeated exposure. | | H402 | Harmful to aquatic life. | | H411 | Toxic to aquatic life with long lasting effects. | #### Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|--| | P260 | Do not breathe mist/vapours/spray. | | P271 | Use only outdoors or in a well-ventilated area. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P264 | Wash all exposed external body areas thoroughly after handling. | | P270 | Do not eat, drink or smoke when using this product. | | P273 | Avoid release to the environment. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | # Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P308+P313 | IF exposed or concerned: Get medical advice/ attention. | | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | P391 | Collect spillage. | | P301+P312 | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell. | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | P330 | Rinse mouth. | # Precautionary statement(s) Storage | P405 | Store locked up. | |-----------|--| | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |-----------|-----------|---------------------------------| | 5989-27-5 | <25 | <u>d-limonene</u> | | 111-76-2 | <20 | ethylene glycol monobutyl ether | | 9016-45-9 | <20 | nonylphenol, ethoxylated | | 7732-18-5 | 30-60 | <u>water</u> | Issue Date: 10/03/2023 Print Date: 14/07/2023 #### Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L: * EU IOELVs available #### **SECTION 4 First aid measures** ## Description of first aid measures | Description of first aid measur | es | |---------------------------------|---| | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. | #### Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Treat symptomatically. Followed acute or short term repeated exposures to ethylene glycol monoalkyl ethers and their acetates: - Hepatic metabolism produces ethylene glycol as a metabolite. - Clinical presentation, following severe intoxication, resembles that of ethylene glycol exposures. - Monitoring the urinary excretion of the alkoxyacetic acid metabolites may be a useful indication of exposure. Transport to hospital or doctor without delay. [Ellenhorn and Barceloux: Medical Toxicology] For acute or short term repeated exposures to ethylene glycol: - Early treatment of ingestion is important. Ensure emesis is satisfactory. - Test and correct for metabolic acidosis and hypocalcaemia. - Apply sustained diuresis when possible with hypertonic mannitol. - Evaluate renal status and begin haemodialysis if indicated. [I.L.O] - Rapid absorption is an indication that emesis or lavage is effective only in the first few hours. Cathartics and charcoal are generally not effective. - Correct acidosis,
fluid/electrolyte balance and respiratory depression in the usual manner. Systemic acidosis (below 7.2) can be treated with intravenous sodium bicarbonate - Ethanol therapy prolongs the half-life of ethylene glycol and reduces the formation of toxic metabolites. - Pyridoxine and thiamine are cofactors for ethylene glycol metabolism and should be given (50 to 100 mg respectively) intramuscularly, four times per day for 2 days. - Magnesium is also a cofactor and should be replenished. The status of 4-methylpyrazole, in the treatment regime, is still uncertain. For clearance of the material and its metabolites, haemodialysis is much superior to peritoneal dialysis. [Ellenhorn and Barceloux: Medical Toxicology] It has been suggested that there is a need for establishing a new biological exposure limit before a workshift that is clearly below 100 mmol ethoxy-acetic acids per mole creatinine in morning urine of people occupationally exposed to ethylene glycol ethers. This arises from the finding that an increase in urinary stones may be associated with such exposures. Laitinen J., et al: Occupational & Environmental Medicine 1996; 53, 595-600 # **SECTION 5 Firefighting measures** #### **Extinguishing media** - Water spray or fog. - Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. #### Special hazards arising from the substrate or mixture Fire Incompatibility None known Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. Fire Fighting DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Fequipment should be thoroughly decontaminated after use. #### Fire/Explosion Hazard - ▶ The material is not readily combustible under normal conditions. - ▶ However, it will break down under fire conditions and the organic component may burn. - Not considered to be a significant fire risk. - Heat may cause expansion or decomposition with violent rupture of containers Page 4 of 19 Citraclean Issue Date: 10/03/2023 Print Date: 14/07/2023 Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposes on heating and produces toxic fumes of: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. **HAZCHEM** #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up **Minor Spills** Environmental hazard - contain spillage. Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - ▶ Control personal contact with the substance, by using protective equipment. - ▶ Contain and absorb spill with sand, earth, inert material or vermiculite - ▶ Wipe up. - Place in a suitable, labelled container for waste disposal. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - Stop leak if safe to do so. - ▶ Contain spill with sand, earth or vermiculite. - ▶ Collect recoverable product into labelled containers for recycling. - ▶ Neutralise/decontaminate residue (see Section 13 for specific agent). - Collect solid residues and seal in labelled drums for disposal. - ▶ Wash area and prevent runoff into drains. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services. Environmental hazard - contain spillage. Chemical Class: ester and ethers For release onto land: recommended sorbents listed in order of priority. | SORBENT
TYPE | RANK | APPLICATION | COLLECTION | LIMITATIONS | |-----------------|------|-------------|------------|-------------| |-----------------|------|-------------|------------|-------------| **Major Spills** | cross-linked polymer - particulate | 1 | shovel | shovel | R, W, SS | |------------------------------------|---|--------|-----------|---------------| | cross-linked polymer - pillow | 1 | throw | pitchfork | R, DGC, RT | | sorbent clay - particulate | 2 | shovel | shovel | R,I, P | | wood fiber - particulate | 3 | shovel | shovel | R, W, P, DGC | | wood fiber - pillow | 3 | throw | pitchfork | R, P, DGC, RT | | treated wood fiber - pillow | 3 | throw | pitchfork | DGC, RT | #### LAND SPILL - MEDIUM LAND SPILL - SMALL | cross-linked polymer - particulate | 1 | blower | skiploader | R,W, SS | |------------------------------------|---|--------|------------|-----------------| | cross-linked polymer - pillow | 2 | throw | skiploader | R, DGC, RT | | sorbent clay - particulate | 3 | blower | skiploader | R, I, P | | polypropylene - particulate | 3 | blower | skiploader | W, SS, DGC | | expanded mineral - particulate | 4 | blower | skiploader | R, I, W, P, DGC | | wood fiber - particulate | 4 | blower | skiploader | R, W, P, DGC | #### Legend DGC: Not effective where ground cover is dense R; Not reusable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 CARE: Absorbent materials wetted with occluded oil must be moistened with water as they may auto-oxidize, become self heating and ignite. Some oils slowly oxidise when spread in a film and oil on cloths, mops, absorbents may autoxidise and generate heat, smoulder, ignite and burn. In the workplace oily rags should be collected and immersed in water Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** Issue Date: **10/03/2023**Print Date: **14/07/2023** #### ▶ DO NOT allow clothing wet with material to stay in contact with skin - Limit all unnecessary personal contact. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. # Store in original containers. - ► Keep containers securely sealed. - Other information No smoking, nar - No smoking, naked lights or ignition sources. - Store in a cool, dry, well-ventilated area. - ► Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. # Conditions for safe storage, including any incompatibilities #### Suitable container Safe handling - Polyethylene or polypropylene container. - Packing as recommended by manufacturer. - ► Check all containers are clearly labelled and free from leaks. Storage incompatibility None known #### SECTION 8 Exposure controls / personal protection #### **Control parameters** #### Occupational Exposure Limits (OEL) #### **INGREDIENT DATA** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|---------------------------------|-----------------|---------------------|--------------------|---------------|---------------| | Australia Exposure Standards | ethylene glycol monobutyl ether | 2-Butoxyethanol | 20 ppm / 96.9 mg/m3 | 242 mg/m3 / 50 ppm | Not Available | Not Available | #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------------------|-----------|-----------|-------------| | d-limonene | 15 ppm | 67 ppm | 170 ppm | | ethylene glycol monobutyl ether | 60 ppm | 120 ppm | 700 ppm | | nonylphenol, ethoxylated | 4.5 mg/m3 | 49 mg/m3 | 300 mg/m3 | | nonylphenol, ethoxylated | 43 mg/m3 | 470 mg/m3 | 5,400 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |---------------------------------|---------------|---------------| | d-limonene | Not Available | Not Available | | ethylene glycol monobutyl ether | 700 ppm | Not Available | | nonylphenol, ethoxylated | Not Available | Not Available | | water | Not Available | Not Available | #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | | |--------------------------|---|----------------------------------|--|--| | d-limonene | E | ≤ 0.1 ppm | | | | nonylphenol, ethoxylated | E | ≤ 0.1 ppm | | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to | | | | # MATERIAL DATA None assigned. Refer to individual constituents. ## **Exposure controls** Engineering controls
are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. range of exposure concentrations that are expected to protect worker health. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. # Appropriate engineering controls General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: Air Speed: Issue Date: 10/03/2023 Print Date: 14/07/2023 | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | |---|---------------------------------| | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Individual protection measures, such as personal protective equipment # Eve and face protection Safety glasses with side shields. Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] #### Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber #### Hands/feet protection #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. #### **Body protection** #### See Other protection below # Other protection - Overalls. P.V.C apron. - Barrier cream. - Skin cleansing cream. - Eye wash unit. #### Recommended material(s) ## **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: ## "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: Citraclear | Material | СРІ | |-------------------|-----| | BUTYL | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NEOPRENE | С | | IITRILE | С | | E/EVAL/PE | С | | VA | С | | VC | С | | ARANEX-23 | С | | TON | С | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|----------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | A-AUS / Class 1
P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. Chemwatch: 24-9182 Page 7 of 19 Issue Date: 10/03/2023 Version No: 5.1 Print Date: 14/07/2023 Citraclean * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. Not Available ▶ Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used Not Available temperature (°C) Viscosity (cSt) #### **SECTION 9 Physical and chemical properties** | Information on basic physical and chemical properties | | | | | |---|--|---|---------------|--| | Appearance | Light yellow liquid with lemon-like odour; mixes with water. | | | | | | | | | | | Physical state | Liquid | Relative density (Water = 1) | Not Available | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | | pH (as supplied) | Not Available | Decomposition | Not Available | | | (0) | | | | |--|---------------|--------------------------|----------------| | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | Flash point (°C) Not Available Taste Not Available **Evaporation rate** Not Available **Explosive properties** Not Available Flammability Not Available Oxidising properties Not Available Surface Tension (dyn/cm or Upper Explosive Limit (%) Not Available Not Available mN/m) Lower
Explosive Limit (%) Not Available Volatile Component (%vol) Not Available Vapour pressure (kPa) Not Available Gas group Not Available Solubility in water Miscible pH as a solution (1%) Not Available Vapour density (Air = 1) VOC g/L Not Available **SECTION 10 Stability and reactivity** Melting point / freezing point | Reactivity | See section 7 | | | |------------------------------------|--|--|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | | | Possibility of hazardous reactions | See section 7 | | | | Conditions to avoid | See section 7 | | | | Incompatible materials | See section 7 | | | | Hazardous decomposition products | See section 5 | | | #### **SECTION 11 Toxicological information** #### Information on toxicological effects Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. ## Inhaled Ethylene glycol monobutyl ether (2-butoxyethanol) and its metabolite butoxyacetic acid are haemolytic agents, causing red blood cell destruction. On the basis of industrial experience and volunteer short-term exposure humans are shown to be less susceptible than experimental animals to exposure. In 8-hour exposures at concentrations of 200 or 100 ppm no objective effects were seen other than raised urinary excretion of the metabolite butoxyacetic acid. No increased osmotic fragility of the red blood cell is observed. Subjectively these concentrations were uncomfortable with mild eye, nose and throat irritation occurring. No clinical signs of adverse effects nor subjective complaints were produced when male volunteers were exposed for 2 hours to 20 ppm during light physical exercise. Other studies have established that the most sensitive indicators of toxic effect observed from many of the glycol ethers is an increase in erythrocyte osmotic fragility in rats. This appears to be related to the development of haemoglobinuria at higher exposure levels. # Ingestion Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis) Accidental ingestion of the material may be damaging to the health of the individual. Severe acute exposure to ethylene glycol monobutyl ether, by ingestion, may cause kidney damage, haemoglobinuria, (blood in urine) and is #### Skin Contact Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there Version No: 5.1 Citraclean Issue Date: **10/03/2023**Print Date: **14/07/2023** may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Toxic effects may result from skin absorption Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Ethylene glycol monobutyl ether (2-butoxyethanol) penetrates the skin easily and toxic effects via this route may be more likely than by inhalation. Percutaneous uptake rate in the guinea pig was estimated to be 0.25 umole/min/cm2. #### Eye When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects. Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following. # Chronic Hydroperoxides of d-limonene are potent contact allergens when studied in guinea pigs. They may result when d-limonene is unstabilised against oxidation, or upon prolonged standing at room temperature and/ or upon exposure to light, or when stabiliser levels diminish. The two major hydroperoxides in auto-oxidised d-limonene, are cis- and trans- limonene-2-hydroperoxide (2-hydroperoxy-p-mentha-6,8-diene). In photo-oxidised d-limonene, they represent a minor fraction. Hydroperoxides may bind to proteins of the skin to make antigens either via a radical mechanism or after reactions to give epoxides. The cross-reactivity between the epoxide limonene-1,2-oxide, a potent contact allergen, and the hydroperoxides is NOT significant, indicating different mechanisms of sensitisation. d-Limonene was considered to be weakly carcinogenic for the mouse fore-stomach epithelium, but not tumour producing. In 13-week and 2-year gavage-studies, male rats showed a range of compound-related kidney lesions including exacerbation of age-related nephropathy, mineralisation in the renal medulla, hyperplasia of the transitional epithelium overlying the renal papilla and proliferation of the renal tubular epithelium. Neoplasms were believed to be caused by progression to tubular cell hyperplasia to tubular cell adenomas and, with increasing size, to adenocarcinomas or carcinomas. The similarity of the nephrotoxicity caused by trichloroethylene and N-(4'-fluoro-4-biphenyl)acetamide, tris(2,3-dibromopropyl)phosphate in rats and the species specific nature of the response suggests that degeneration and necrosis of convoluted tubules may be associated with the accumulation of alpha-2u-globin (a2u-G). Since a2u-G is a species and gender-specific protein that is causal for both the cytotoxic and carcinogenic response in male rats, extrapolation of d-limonene carcinogenicity data from rat studies to other species (including humans) is probably not warranted. Humans do not synthesise a2u-G; they do however produce other related low molecular
weight proteins capable of binding chemicals that cause a2u-G nephropathy in rats but this does not necessarily connote human risk. The Risk Assessment Forum of the USA EPA concluded: - Male renal rat tumours arising as a result of a process involving a2u-G accumulation do not contribute to the qualitative weight-of-evidence that the chemical poses a human carcinogenic hazard. Such tumours are included in dose-response extrapolations for the estimation of human carcinogenic risk. - If the chemical induces a2u-G accumulation in male rats, the associated nephropathy is not to be used as an end-point for determining non-carcinogenic hazard. Studies with some ethylene glycol ethers and their esters indicate reproductive changes, testicular atrophy, infertility and kidney function changes. The metabolic acetic acid derivatives of the glycol ethers (alkoxyacetic acids), not the ether itself, have been found to be the proximal reproductive toxin in animals. The potency of these metabolites decrease significantly as the chain length of the ether increases. Consequently glycol ethers with longer substituents (e.g diethylene glycols, triethylene glycols) have not generally been associated with reproductive effects. One of the most sensitive indicators of toxic effects observed from many of the glycol ethers is an increase in the erythrocytic osmotic fragility in rats. This appears to be related to the development of haemoglobinuria (blood in the urine) at higher exposure levels or as a result of chronic exposure. Ethylene glycol ethers and acetates are mainly metabolised to alkoxyacetic acids but there is also a minor pathway through ethylene glycol to oxalic acid. The main pathway of ethylene glycol ethers is associated with significant clinical or experimental health effects, but the minor pathway is also interesting because formation of urinary stones depends principally upon urinary concentration of oxalate and calcium. In one study (1) the tendency to form urinary stones was 2.4 times higher amongst silk-screen printers exposed to ethylene glycol ethers, than among office workers. (1) Laitinen J., et al: Occupational Environmental Medicine 1996, 53 595-600 | 01/ | TOXICITY | IRRITATION | |------------------------------------|--|--| | Citraclean | Not Available | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >5000 mg/kg ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | d-limonene | Oral (Rat) LD50: >2000 mg/kg ^[1] | Skin (rabbit): 500mg/24h moderate | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | | dermal (guinea pig) LD50: 210 mg/kg ^[2] | Eye (rabbit): 100 mg SEVERE * [Union Carbide] | | ethylene glycol monobutyl
ether | Inhalation(Rat) LC50: 450 ppm4h ^[2] | Eye (rabbit): 100 mg/24h-moderate | | | Oral (Rat) LD50: 250 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | | | Issue Date: **10/03/2023**Print Date: **14/07/2023** | | | Skin (rabbit): 500 mg, open; mild | | |--------------------------|---|--|--| | | | Skin: adverse effect observed (irritating) ^[1] | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: 2943.2 mg/kg ^[2] | Eye (rabbit): 5 mg SEVERE | | | nonylphenol, ethoxylated | Oral (Rat) LD50: 1310 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | nonyiphenoi, ethoxylateu | | Skin (human): 15 mg/3D mild | | | | | Skin (rabbit): 500 mg mild | | | | | Skin: adverse effect observed (irritating) ^[1] | | | | TOWATTY | IDDITATION | | | water | TOXICITY | IRRITATION | | | water | Oral (Rat) LD50: >90000 mg/kg ^[2] | Not Available | | | Legend: | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | #### Tumorigenic by RTECS criteria The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. d-Limonene is readily absorbed by inhalation and ingestion. Dermal absorption is reported to be lower than by the inhalation route. d-Limonene is rapidly distributed to different tissues in the body, readily metabolised and eliminated primarily through the urine. Limonene exhibits low acute toxicity by all three routes in animals. Limonene is a skin irritant in both experimental animals and humans. Limited data are available on the potential to cause eye and respiratory irritation. Autooxidised products of d-limonene have the potential to be skin sensitisers. Limited data are available in humans on the potential to cause respiratory sensitisation. Autooxidation of limonene occurs readily in the presence of light and air forming a variety of oxygenated monocyclic terpenes. Risk of skin sensitisation is high in situations where contact with oxidation products of limonene occurs. Renal tumours induced by limonene in male rats is though to be sex and species specific and are not considered relevant to humans. Repeated exposure affects the amount and activity of liver enzymes, liver weight, blood cholesterol levels and bile flow in animals. Increase in liver weight is considered a physiological adaption as no toxic effects on the liver have been reported. From available data it is not possible to identify an NOAEL for these effects. Limonene is neither genotoxic or teratogenic nor toxic to the reproductive system. Adverse reactions to fragrances in perfumes and in fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, photosensitivity, immediate contact reactions (contact urticaria), and pigmented contact dermatitis. Airborne and connubial contact dermatitis Intolerance to perfumes, by inhalation, may occur if the perfume contains a sensitising principal. Symptoms may vary from general illness, coughing, phlegm, wheezing, chest-tightness, headache, exertional dyspnoea, acute respiratory illness, hayfever, and other respiratory diseases (including asthma). Perfumes can induce hyper-reactivity of the respiratory tract without producing an IgE-mediated allergy or demonstrable respiratory obstruction. This was shown by placebo-controlled challenges of nine patients to "perfume mix". The same patients were also subject to perfume provocation, with or without a carbon filter mask, to ascertain whether breathing through a filter with active carbon would prevent symptoms. The patients breathed through the mouth, during the provocations, as a nose clamp was used to prevent nasal inhalation. The patient's earlier symptoms were verified; breathing through the carbon filter had no protective effect. The symptoms were not transmitted via the olfactory nerve but they may have been induced by trigeminal reflex via the respiratory tract or by the eyes. Cases of occupational asthma induced by perfume substances such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms even though the exposure is below occupational exposure limits. Inhalation intolerance has also been produced in animals. The emissions of five fragrance products, for one hour, produced various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity as well as alterations of the functional observational battery indicative of neurotoxicity in mice. Neurotoxicity was found to be more severe after mice were repeatedly exposed to the fragrance products, being four brands of cologne and one brand of toilet water. Contact allergy to fragrances is relatively common, affecting 1 to 3% of the general population, based on limited testing with eight common fragrance allergens and about 16 % of patients patch tested for suspected allergic contact dermatitis. Contact allergy to fragrance ingredients occurs when an individual has been exposed, on the skin, to a suffcient degree of fragrance contact allergens. Contact allergy is a life-long, specifically altered reactivity in the immune system. This means that once contact allergy is developed, cells in the immune system will be present which can recognise and react towards the allergen. As a consequence, symptoms, i.e. allergic contact dermatitis, may occur upon re-exposure to the fragrance allergen(s) in question. Allergic contact dermatitis is an inflammatory skin disease characterised by erythema, swelling and vesicles in the acute phase. If exposure continues it may develop into a chronic condition with scaling and painful fissures of the skin. Allergic contact dermatitis to fragrance ingredients is most often caused by cosmetic products and usually involves the face and/or hands. It may affect
fitness for work and the quality of life of the individual. Fragrance contact allergy has long been recognised as a frequent and potentially disabling problem. Prevention is possible as it is an environmental disease and if the environment is modified (e.g. by reduced use concentrations of allergens), the disease frequency and severity will decrease Fragrance contact allergy is mostly non-occupational and related to the personal use of cosmetic products. Allergic contact dermatitis can be severe and widespread, with a significant impairment of quality of life and potential consequences for fitness for work. Thus, prevention of contact sensitisation to fragrances, both in terms of primary prevention (avoiding sensitisation) and secondary prevention (avoiding relapses of allergic contact dermatitis in those already sensitised), is an important objective of public health risk management measure. Hands: Contact sensitisation may be the primary cause of hand eczema, or may be a complication of irritant or atopic hand eczema. The number of positive patch tests has been reported to correlate with the duration of hand eczema, indicating that long-standing hand eczema may often be complicated by sensitisation. Fragrance allergy may be a relevant problem in patients with hand eczema; perfumes are present in consumer products to which their hands are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in (severe) chronic hand eczema may not be clear. Axillae Bilateral axillary (underarm) dermatitis may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a dermatologist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy. Face Facial eczema is an important manifestation of fragrance allergy from the use of cosmetic products (16). In men, after-shave products can cause an eczematous eruption of the beard area and the adjacent part of the neck and men using wet shaving as opposed to dry have been shown to have an increased risk of of being fragrance allergic. Irritant reactions (including contact urticaria): Irritant effects of some individual fragrance ingredients, e.g. citral are known. Irritant contact # D-LIMONENE Version No: 5.1 Citraclean Issue Date: 10/03/2023 Print Date: 14/07/2023 dermatitis from perfumes is believed to be common, but there are no existing investigations to substantiate this, Many more people complain about intolerance or rashes to perfumes/perfumed products than are shown to be allergic by testing. This may be due to irritant effects or inadequate diagnostic procedures. Fragrances may cause a dose-related contact urticaria of the non-immunological type (irritant contact urticaria). Cinnamal, cinnamic alcohol, and Myroxylon pereirae are well recognised causes of contact urticaria, but others, including menthol, vanillin and benzaldehyde have also been reported. The reactions to Myroxylon pereirae may be due to cinnamates. A relationship to delayed contact hypersensitivity was suggested, but no significant difference was found between a fragrance-allergic group and a control group in the frequency of immediate reactions to fragrance ingredients in keeping with a nonimmunological basis for the reactions seen. Pigmentary anomalies: The term "pigmented cosmetic dermatitis" was introduced in 1973 for what had previously been known as melanosis faciei feminae when the mechanism (type IV allergy) and causative allergens were clarified.. It refers to increased pigmentation, usually on the face/neck, often following sub-clinical contact dermatitis. Many cosmetic ingredients were patch tested at non-irritant concentrations and statistical evaluation showed that a number of fragrance ingredients were associated: jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol, geranium oil. Photo-reactions Musk ambrette produced a considerable number of allergic photocontact reactions (in which UV-light is required) in the 1970s and was later banned from use in the EU. Nowadays, photoallergic contact dermatitis is uncommon. Furocoumarins (psoralens) in some plant-derived fragrance ingredients caused phototoxic reactions with erythema followed by hyperpigmentation resulting in Berloque dermatitis. There are now limits for the amount of furocoumarins in fragrance products. Phototoxic reactions still occur but are rare. **General/respiratory:** Fragrances are volatile and therefore, in addition to skin exposure, a perfume also exposes the eyes and naso-respiratory tract. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. In an epidemiological investigation, a significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients, in addition to hand eczema, which were independent risk factors in a multivariate analysis. Fragrance allergens act as haptens, i.e. low molecular weight chemicals that are immunogenic only when attached to a carrier protein. However, not all sensitising fragrance chemicals are directly reactive, but require previous activation. A **prehapten** is a chemical that itself is non- or low-sensitising, but that is transformed into a hapten outside the skin by simple chemical transformation (air oxidation, photoactivation) and without the requirement of specific enzymatic systems. In the case of prehaptens, it is possible to prevent activation outside the body to a certain extent by different measures, e.g. prevention of air exposure during handling and storage of the ingredients and the final product, and by the addition of suitable antioxidants. When antioxidants are used, care should be taken that they will not be activated themselves and thereby form new sensitisers. #### **Prehaptens** Most terpenes with oxidisable allylic positions can be expected to autoxidise on air exposure due to their inherent properties. Depending on the stability of the oxidation products that are formed, a difference in the sensitisation potency of the oxidised terpenes can be seen Autoxidation is a free radical chain reaction in which hydrogen atom abstraction in combination with addition of oxygen forms peroxyl radicals. The reaction shows selectivity for positions where stable radicals can be formed. So far, all fragrance substances that have been investigated with regard to the influence of autoxidation on the allergenic potential, including identification of formed oxidation products, have oxidisable allylic positions that are able to form hydroperoxides and/or hydrogen peroxide as primary oxidation products upon air exposure. Once the hydroperoxides have been formed outside the skin they form specific antigens and act as skin sensitisers. Secondary oxidation products such as aldehydes and epoxides can also be allergenic, thus further increasing the sensitisation potency of the autoxidation mixture. The process of photoactivation may also play a role, but further research is required to establish whether this activation route is currently underestimated in importance due to insufficient knowledge of the true haptens in this context. It should be noted that activation of substances via air oxidation results in various haptens that might be the same or cross-reacting with other haptens (allergens). The main allergens after air oxidation of linalool and linalyl acetate are the hydroperoxides. If linalyl acetate is chemically hydrolysed outside the skin it can thereafter be oxidised to the same haptens as seen for linalool. A corresponding example is citronellol and citronellyl acetate. In clincal studies, concomitant reactions to oxidised linalool and oxidised linalyl acetate have been observed. Whether these reactions depend on cross-reactivity or are due to exposure to both fragrance substances cannot be elucidated as both have an allergenic effect themselves. Linalool and linalyl acetate are the main components of lavender oil. They autoxidise on air exposure also when present in the essential oil, and form the same oxidation products found in previous studies of the pure synthetic terpenes. Experimental sensitisation studies showed that air exposure of lavender oil increased the sensitisation potency. Patch test results in dermatitis patients showed a connection between positive reactions to oxidised linalool, linalyl acetate and lavender oil. #### **Prohaptens** Compounds that are bioactivated in the skin and thereby form haptens are referred to as prohaptens. In the case of prohaptens, the possibility to become activated is inherent to the molecule and activation cannot be avoided by extrinsic measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Crossreactivity has been shown for certain alcohols and their corresponding aldehydes, i.e. between geraniol and geranial (citral) and between cinnamyl alcohol and cinnamal. The human skin expresses enzyme systems that are able to metabolise xenobiotics, modifying their chemical structure to increase hydrophilicity and allow elimination from the body. Xenobiotic metabolism can be divided into two phases: phase I and phase II. Phase I transformations are known as activation or functionalisation reactions, which normally introduce or unmask hydrophilic functional groups. If the metabolites are sufficiently polar at this point they will be eliminated. However, many phase I products have to undergo subsequent phase II transformations, i.e.
conjugation to make them sufficiently water soluble to be eliminated. Although the purpose of xenobiotic metabolism is detoxification, it can also convert relatively harmless compounds into reactive species. Cutaneous enzymes that catalyse phase I transformations include the cytochrome P450 mixed-function oxidase system, alcohol and aldehyde dehydrogenases, monoamine oxidases, flavin-containing monooxygenases and hydrolytic enzymes. Acyltransferases, glutathione S-transferases, UDP-glucuronosyltransferases and sulfotransferases are examples of phase II enzymes that have been shown to be present in human skin. These enzymes are known to catalyse both activating and deactivating biotransformations, but the influence of the reactions on the allergenic activity of skin sensitisers has not been studied in detail. Skin sensitising prohaptens can be recognised and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or in vivo and in vitro studies of sensitisation potential and chemical reactivity. QSAR prediction: The relationships between molecular structure and reactivity that form the basis for structural alerts are based on well established principles of mechanistic organic chemistry. Examples of structural alerts are aliphatic aldehydes (alerting to the possibility of sensitisation via a Schiff base reaction with protein amino groups), and alpha,beta-unsaturated carbonyl groups, C=C-CO- (alerting to the possibility of sensitisation via Michael addition of protein thiol groups). Prediction of the sensitisation potential of compounds that can act via abiotic or metabolic activation (pre- or prohaptens) is more complex compared to that of compounds that act as direct haptens without any activation. The autoxidation patterns can differ due to differences in the stability of the intermediates formed, e.g. it has been shown that autoxidation of the structural isomers linalool and geraniol results in different major haptens/allergens. Moreover, the complexity of the prediction increases further for those compounds that can act both as pre- and prohaptens. In such cases, the impact on the sensitisation potency depends on the degree of abiotic activation (e.g. autoxidation) in relation to the metabolic activation. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Monomethyltin chloride, thioglycolate esters, and tall oil ester reaction product: Monomethyltin trichloride (MMTC, CAS RN: 993-16-8), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA), CAS RN: 57583-34-3), monomethyltin tris[isooctylmercaptoacetate (MMT(IOTG), CAS RN: 54849-38-6) and methyltin reverse ester tallate reaction product (TERP, CAS RNs: 201687-58-3, 201687-57-2, 68442-12-6, 151436-98-5) are considered one category of compounds for mammalian studies via the oral route. The justification for this category is based on structural similarities and the demonstrated rapid conversion of all of the esters to the MMTC when placed in simulated mammalian gastric contents [0.07M HCI] under physiological conditions. For the MMT(EHTG) >90% conversion to MMTC occurred within 0.5 hours. For TERP, 68% of the monomethyltin portion of the compound was converted to MMTC within 1 hour. Thus, MMTC is the appropriate surrogate for mammalian toxicology studies via the oral route. TERP is a reaction product of MMTC and dimethyltin dichloride (DMTC), Na2S, and tall oil fatty acid [a mixture of carboxylic acids, predominantly C-18]. The reaction product is a mixture of carboxylic esters and includes short oligomers of mono/dimethyltins bridged by sulfide groups. Although the tall oil component of TERP is not structurally similar to EHTG, TERP s conversion to MMTC justifies its inclusion. While the Issue Date: 10/03/2023 Print Date: 14/07/2023 Citraclean contribution of the various ligands to the overall toxicity may vary, the contribution is expected to be small relative to that of the MMTC. Further, the EHTG ligand from MMT(EHTG) is likely to be more toxic than the oleic or linoleic acid from TERP so inclusion of TERP in the category is a rather conservative approach. The other possible degradate of tall oil and EHTG is 2-mercaptoethanol (2-ME), and it is common to both ligands. Data for MMT(EHTG) and MMT(IOTG) are used interchangeably because they are isomers differing only slightly in the structure of the C-8 alcohol of the mercaptoester ligand. In addition, the breakdown products of MMT(EHTG) and MMT(IOTG) are the thioglycolate esters (EHTG and IOTG), which have the common degradates, thioglycolic acid and C-8 alcohols (either 2-ethylhexanol or isooctanol), EHTG and IOTG also have similar physicochemical and toxicological properties. The chemistry of the alkyl organotins has been well studied. For organotins, like MMT(EHTG), the alkyl groups are strongly bound to tin and remain bound to tin under most reaction conditions. However, other ligands, such as carboxylates or sulfur based ligands (EHTG), are more labile and are readily replaced under mild reaction conditions. To assess the reactivity of MMT(EHTG) under physiological conditions simulating the mammalian stomach, an in-vitro hydrolysis test was performed. This in vitro test provides chemical information that strongly suggests both the probable in vivo metabolic pathway and the toxicokinetics of the MMT(EHTG) substance. This result verifies that under physiological conditions MMT(EHTG) is rapidly and essentially completely converted to the corresponding monomethyltin chloride, MMTC. Acute toxicity: The majority of toxicology studies were conducted with commercial mixtures having high monoalkyltin to dialkyltin ratios. Gastric hydrolysis studies were conducted with TERP and MMT(EHTG) in which simulated gastric fluid [0.07M HCl under physiological conditions] converted these substances to methyltin chloride and the respective organic acids. Based on data for DMTC and DMT esters the dermal penetration of MMTC and its esters is expected to be low. Acute oral LD50 values for MMTC, MMT(EHTG), MMT(IOTG), and TERP indicated low to moderate toxicity; the most reliable data place the LD50s in the range of 1000 mg/kg. The acute oral LD50 of MMT(2-EHMA) was 880 mg/kg in rats. Clinical observations included depression, comatose, piloerection, eye squinting, hunched posture, laboured breathing, ataxia, faecal/urine stains, and masticatory movement. No gross pathological changes were reported in surviving animals. #### Dermal Oral: Acute dermal LD50 values were =1000 mg/kg bw, and inhalation LC50 was >200 mg/L. MMTC was corrosive to skin and assumed corrosive to eyes. The acute dermal LD50 of MMT(2-EHMA) in rabbits was 1000 (460 to 2020) mg/kg for females and 2150 (1000 to 4620) mg/kg for males. There were no deaths at 215 and 464 mg/kg, 0/2 males and 1/2 females died at 1000 mg/kg and 1/2 males and 2/2 females died at 2150 mg/kg. All animals died at 4640 and 10 000 mg/kg. A variety of clinical abnormalities were observed and disappeared in surviving animals by the end of the exposure period. Clinical signs included death, uncoordinated movements, shaking, and hypersensitivity to external stimuli. Gross necropsy results for animals that died during the study included irritated intestines; blanched stomach; reddened lungs; pale or congested kidneys; and oral, ocular and/or nasal discharges The acute inhalation LC50 of MMT(2-EHMA) was 240 mg/L. The study reported an acute inhalation LC50 of 240 (212 to 271) mg/L in a 1-hr aerosol exposure to male and female rats. The mortality rate was 2/10, 6/10, 9/10 and 10/10 animals at dose levels of 200, 250, 300 and 250 mg/L/hr, respectively. Gross findings included blood in lungs, dark spleen, pale kidneys, fluid in the chest cavity, and heart failure. The slope of the dose-response curve was 1.22 (1.04 to 1.43). MMT(IOTG)/(EHTG) are irritating to skin, but not to eyes. #### Sensitisation: No data on sensitization are available on MMT(EHTG/(IOTG), but the hydrolysis products EHTG or IOTG are sensitizers. No primary irritation data were available for TERP, but it was a sensitizer in the mouse Local Lymph Node Assay. Topical application with 5, 25 and 50 % v/v MMT(2-EHMA) elicited a stimulation index (SI) of 2.13, 7.25 and 9.05, respectively in a local lymph node assay (OECD 429), thus the material is a sensitiser. #### Repeat dose toxicity: There are no repeated-dose studies for the category members via the dermal or inhalation routes. In a 90-day repeated dose oral study of MMTC, treatment-related changes were limited to the high dose group (750 ppm in diet; 50 mg/kg bw/d with some gender-related variation). Organ weight changes (adrenal, kidney, thymus, spleen, brain, epididymides), haematology, clinical chemistry, and urinalysis changes were noted, but histopathology only confirmed effects in the thymus and brain. The critical toxic effects were neurotoxicity and thymic atrophy. Both sexes had decreased cortex/medulla ratios in the thymus. In the brain there was loss of perikarya of neuronal cells in the pyramidal layer of the Hippocampus CA1/2 in both sexes, and in males there was loss of perikarya in the piriform cortex. The NOAEL was 150 ppm (10 mg/kg bw/d). Another 90-day dietary study using MMTC showed increased relative kidney weights and slight to moderate epithelial hyperplasia of the bladder in females at the lowest dose (NOAEL <20 ppm in diet [<1-3.6 mg/kg bw/d]) and additional effects including increased relative thymus weights in females and urinalysis results in both sexes at higher doses. A 90-day dietary study with dose levels of 30, 100, 300, and 1000 ppm TERP in the diet resulted in slightly decreased food intake, body and organ weight changes, and decreased specific gravity of the urine at the highest dose. The NOAEL was 300 ppm in diet (equivalent to 15 mg/kg
bw/d). A 28-day gavage study using TERP showed changes in clinical chemistry and slight differences in haematology at 150 mg/kg bw/d and higher. The NOAEL was 50 mg/kg bw/d. The effects of MMT(IOTG) were evaluated in a 90-day dietary study using doses of 100, 500, and 1500 ppm (decreased from 2500 ppm) in the diet. Based on clinical chemistry effects at 500 ppm and other effects at higher doses, the NOAEL was 100 ppm in diet (approximately 6-21 mg/kg bw/d). # Neurotoxicity: In a guideline 90-day subchronic dietary study conducted in Wistar rats, effects occurred at the high dose of 750 ppm MMT(2-EHMA, (equivalent to 49.7 mg/kg bw/day in males and 53.6 mg/kg bw/day in females), which consisted of changes in neurobehavioral parameters and associated brain histopathology. The NOAEL was the next lower dose of 150 ppm (equivalent to 9.8 mg/kg bw/day in males and 10.2 mg/kg bw/day in females #### Immunotoxicity: Immune function was assessed in male Sprague-Dawley rats exposed to the mixture of organotins used in PVC pipe production Adult male rats were given drinking water for 28 d containing a mixture of dibutyltin dichloride (DBTC), dimethyltin dichloride (DMTC), monobutyltin trichloride (MBT), and monomethyltin trichloride (MMT) in a 2:2:1:1 ratio, respectively, at 3 different concentrations (5:5:2.5:2.5, 10:10:5:5, or 20:20:10:10 mg organotin/L). Rats were also exposed to MMT alone (20 or 40 mg MMT/L) or plain water as a control. Delayed-type hypersensitivity, antibody synthesis, and natural killer cell cytotoxicity were evaluated in separate endpoint groups immediately after exposure The evaluated immune functions were not affected by the mixture or by MMT alone. The data suggest that immunotoxicity is unlikely to result from the concentration of organotins present in drinking water delivered via PVC pipes, as the concentrations used were several orders of magnitude higher than those expected to leach from PVC pipes Genotoxicity: In a guideline 90-day subchronic dietary study in rats, with MMT(2-EHMA), based on the changes in neurobehavioral parameters and associated brain histopathology that occurred at the high dose of 750 ppm (equivalent to 49.7 mg/kg bw/day in males and 53.6 mg/kg bw/day in females), as well as changes in haematology, clinical chemistry, urinalysis, organ weights, and pathology of the thymus at the same dose, the NOAEL was the next lower dose of 150 ppm (equivalent to 9.8 mg/kg bw/day in males and 10.2 mg/kg bw/day in females). The monomethyltin compounds as a class are not mutagenic in the Ames test. TERP was positive in a human lymphocyte assay. MMTC was equivocal for induction of micronucleated polychromatic erythrocytes (MPEs) in an in vivo rat micronucleus test (OECD 474). In this study a statistically significant increase in MPE was observed only at 24 h and not at 48 h after treatment and there was no dose-response. Based on these observations the overall conclusion is that MMTC does not have genotoxic potential. From the results obtained in a micronucleus test with MMT(2-EHMA), it was demonstrated that the substance was weakly genotoxic to bone marrow cells of rats and that the substance has the potential to induce damage to the mitotic spindle apparatus of the bone marrow target cells. Issue Date: **10/03/2023**Print Date: **14/07/2023** #### Carcinogenicity: In a limited carcinogenicity study, MMT(EHTG) produced no compound-related macroscopic or microscopic changes in rats fed 100 ppm in the diet for two years. #### Toxicity to reproduction: In the reproductive satellite portion of the 90-day study using MMTC (with dose levels of 30, 150, and 750 ppm in the diet), post-implantation loss, decreased litter size and increased neonatal mortality occurred at 750 ppm (26-46 mg/kg bw/d for females). Maternal gestational body weights were transiently suppressed and other maternal toxicity was inferred from the repeated dose results at this dose. There were no malformations observed at any dose. The NOAEL for maternal toxicity, and reproductive, and foetotoxic effects was 150 ppm in the diet (6-12 mg/kg bw/d). SIDS Initial Assessment Profile (SIAM 23 2006) ECHA Registration Dossier for MMT(2-EHMA) (ethylhexyl 10-ethyl-4-[[2-[(2-ethylhexyl)oxy]-2-oxoethyl]thio]-4-methyl-7-oxo-8-oxa-3,5-dithia-4-stannatetradecanoate) NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed to high concentrations of this substance by all routes. ** ASCC (NZ) SDS For ethylene glycol monoalkyl ethers and their acetates (EGMAEs): of action data available, there was no significant hazard for human carcinogenicity Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates. EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Four to six hour acute inhalation toxicity studies were conducted for these chemicals in rats at the highest vapour concentrations practically achievable. Values range from LC0 > 85 ppm (508 mg/m3) for EGHE, LC50 > 400ppm (2620 mg/m3) for EGBEA to LC50 > 2132 ppm (9061 mg/m3) for EGPE. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 435 mg/kg bw (EGBE) to 1500 mg/kg bw (EGBEA). Overall these category members can be considered to be of low to moderate acute toxicity. All category members cause reversible irritation to skin and eyes, with EGBEA less irritating and EGHE more irritating than the other category members. EGPE and EGBE are not sensitisers in experimental animals or humans. Signs of acute toxicity in rats, mice and rabbits are consistent with haemolysis (with the exception of EGHE) and non-specific CNS depression typical of organic solvents in general. Alkoxyacetic acid metabolites, propoxyacetic acid (PAA) and butoxyacetic acid (BAA), are responsible for the red blood cell hemolysis. Signs of toxicity in humans deliberately ingesting cleaning fluids containing 9-22% EGBE are similar to those of rats, with the exception of haemolysis. Although decreased blood haemoglobin and/or haemoglobinuria were observed in some of the human cases, it is not clear if this was due to toxicity from EGPE and EGBE in vitro than those of rats. Repeat dose toxicity: The fact that the NOAEL for repeated dose toxicity of EGBE is less than that of EGPE is consistent with red blood cells being more sensitive to EGBE than EGPE. Blood from mice, rats, hamsters, rabbits and baboons were sensitive to the effects of BAA *in vitro* and displayed similar responses, which included erythrocyte swelling (increased haematocrit and mean corpuscular hemoglobin), followed by hemolysis. Blood from humans, pigs, dogs, cats, and guinea pigs was less sensitive to haemolysis by BAA *in vitro*. Mutagenicity: In the absence and presence of metabolic activation, EGBE tested negative for mutagenicity in Ames tests conducted in *S. typhimurium* strains TA97, TA98, TA100, TA1535 and TA1537 and EGHE tested negative in strains TA98, TA100, TA1535, TA1537 and TA1538. *In vitro* cytogenicity and sister chromatid exchange assays with EGBE and EGHE in Chinese Hamster Ovary Cells with and without metabolic activation and in vivo micronucleus tests with EGBE in rats and mice were negative, indicating that these glycol ethers are not genotoxic. Carcinogenicity: In a 2-year inhalation chronic toxicity and carcinogenicity study with EGBE in rats and mice a significant increase in the incidence of liver haemangiosarcomas was seen in male mice and forestomach tumours in female mice. It was decided that based on the mode Reproductive and developmental toxicity. The results of reproductive and developmental toxicity studies indicate that the glycol ethers in this category are not selectively toxic to the reproductive system or developing fetus, developmental toxicity is secondary to maternal toxicity. The repeated dose toxicity studies in which reproductive organs were examined indicate that the members of this category are not associated with toxicity to reproductive organs (including the testes). Results of the developmental toxicity studies conducted via inhalation exposures during gestation periods on EGPE (rabbits -125, 250, 500 ppm or 531, 1062, or 2125 mg/m3 and rats - 100, 200, 300, 400 ppm or 425, 850, 1275, or 1700 mg/m3), EGBE (rat and rabbit - 25, 50, 100, 200 ppm or 121, 241, 483, or 966 mg/m3), and EGHE (rat and rabbit - 20.8, 41.4, 79.2 ppm or 124, 248, or 474 mg/m3) indicate that the members of the category are not teratogenic. The NOAELs for developmental toxicity are greater than 500 ppm or 2125 mg/m3 (rabbit-EGPE), 100 ppm or 425 mg/m3 (rat-EGPE), 50 ppm or 241 mg/m3 (rat EGBE) and 100 ppm or 483 mg/m3 (rabbit EGBE) and greater than 79.2 ppm or 474 mg/m3 (rat and rabbit-EGHE). Exposure of pregnant rats to ethylene glycol monobutyl ether (2-butoxyethanol) at 100 ppm or rabbits at 200 ppm during organogenesis resulted in maternal toxicity and embryotoxicity including a decreased number of viable implantations per litter. Slight foetoxicity in the form of poorly ossified or unossified skeletal elements was also apparent in rats. Teratogenic effects were not observed in other species. At least one researcher has stated that the reproductive effects were less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, macrocytosis, abnormally large red cells and abnormal red cell fragility. Exposure of male and female rats and mice for 14
weeks to 2 years produced a regenerative haemolytic anaemia and subsequent effects on the haemopoietic system in rats and mice. In addition, 2-butoxyethanol exposures caused increases in the incidence of neoplasms and nonneoplastic lesions (1). The occurrence of the anaemia was concentration-dependent and more pronounced in rats and females. In this study it was proposed that 2-butoxyethanol at concentrations of 500 ppm and greater produced an acute disseminated thrombosis and bone infarction in male and female rats as a result of severe acute haemolysis and reduced deformability of erythrocytes or through anoxic damage to endothelial cells that compromise blood flow. In two-year studies, 2-butoxyethanol continued to affect circulating erythroid mass, inducing a responsive anaemia. Rats showed a marginal increase in the incidence of benign or malignant pheochromocytomas (combined) of the adrenal gland. In mice, 2-butoxyethanol exposure resulted in a concentration dependent increase in the incidence of squamous cell papilloma or carcinoma of the forestomach. It was hypothesised that exposure-induced irritation produced inflammatory and hyperplastic effects in the forestomach and that the neoplasia were associated with a continuation of the injury/ degeneration process. Exposure also produced a concentration -dependent increase in the incidence of haemangiosarcoma of the liver of male mice and hepatocellular carcinoma. 1: NTP Toxicology Program Technical report Series 484, March 2000. For nonylphenol and its compounds: Alkylphenols like nonylphenol and bisphenol A have estrogenic effects in the body. They are known as xenoestrogens. Estrogenic substances and other endocrine disruptors are compounds that have hormone-like effects in both wildlife and humans. Xenoestrogens usually function by binding to estrogen receptors and acting competitively against natural estrogens. Nonylphenol has been found to act as an agonist of GPER (G protein-coupled estrogen receptor),. Nonylphenol has been shown to mimic the natural hormone 17beta-estradiol, and it competes with the endogeous hormone for binding with the estrogen receptors ERalpha and ERbeta. Effects in pregnant women. #### NONYLPHENOL, ETHOXYLATED # Subcutaneous injections of nonylphenol in late pregnancy causes the expression of certain placental and uterine proteins, namely CaBP-9k, which suggest it can be transferred through the placenta to the fetus. It has also been shown to have a higher potency on the first trimester placenta than the endogenous estrogen 17beta-estradiol. In addition, early prenatal exposure to low doses of nonylphenol cause an increase in apoptosis (programmed cell death) in placental cells. These "low doses" ranged from 10-13-10-9 M, which is lower than what is generally found in the environment. Nonylphenol has also been shown to affect cytokine signaling molecule secretions in the human placenta. In vitro cell cultures of human placenta during the first trimester were treated with nonylphenol, which increase the secretion of cytokines including interferon gamma, interleukin 4, and interleukin 10, and reduced the secretion of tumor necrosis factor alpha. This unbalanced cytokine profile at this part of pregnancy has been documented to result in implantation failure, pregnancy loss, and other complications. Effects on metabolism #### ETHYLENE GLYCOL MONOBUTYL ETHER Page 13 of 19 Citraclean Issue Date: **10/03/2023**Print Date: **14/07/2023** Nonylphenol has been shown to act as an obesity enhancing chemical or obesogen, though it has paradoxically been shown to have anti-obesity properties. Growing embryos and newborns are particularly vulnerable when exposed to nonylphenol because low-doses can disrupt sensitive processes that occur during these important developmental periods. Prenatal and perinatal exposure to nonylphenol has been linked with developmental abnormalities in adipose tissue and therefore in metabolic hormone synthesis and release. Specifically, by acting as an estrogen mimic, nonylphenol has generally been shown to interfere with hypothalamic appetite control. The hypothalamus responds to the hormone leptin, which signals the feeling of fullness after eating, and nonylphenol has been shown to both increase and decrease eating behavior by interfering with leptin signaling in the midbrain. Nonylphenol has been shown mimic the action of leptin on neuropeptide Y and anorectic POMC neurons, which has an anti-obesity effect by decreasing eating behavior. This was seen when estrogen or estrogen mimics were injected into the ventromedial hypothalamus. On the other hand, nonylphenol has been shown to increase food intake and have obesity enhancing properties by lowering the expression of these anorexigenic neurons in the brain. Additionally, nonylphenol affects the expression of ghrelin: an enzyme produced by the stomach that stimulates appetite. Ghrelin expression is positively regulated by estrogen signaling in the stomach, and it is also important in guiding the differentiation of stem cells into adipocytes (fat cells). Thus, acting as an estrogen mimic, prenatal and perinatal exposure to nonylphenol has been shown to affect insulin signaling in the liver of adult male rats. Cancer Nonylphenol exposure has also been associated with breast cancer. It has been shown to promote the proliferation of breast cancer cells, due to its agonistic activity on ERalpha (estrogen receptor alpha) in estrogen-dependent and estrogen-independent breast cancer cells. Some argue that nonylphenol's suggested estrogenic effect coupled with its widespread human exposure could potentially influence hormone-dependent breast cancer disease Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture. On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers. Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69 Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations. Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology http://doi.org/10.5487/TR.2015.31.2.105 Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity. Clinical animal studies indicate these chemicals may produce gastrointestinal irritation
such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture. On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose allergic contact dermatitis (ACD) to these compounds by patch testing Overall, alcohol alkoxylates (AAs) are not expected to be systemically toxic, although some short chain ethylene glycol ethers, e.g. methyl and ethyl homologues are of concern for a range of adverse health effects. They include skin and eye irritation, liver and kidney damage, bone marrow and central nervous system (CNS) depression, testicular atrophy, developmental toxicity, and immunotoxicity. For higher propyl and butyl homologues, the toxicity involves haemolysis (anaemia) with secondary effects relating to haemosiderin accumulation in the spleen, liver and kidney, and compensatory haematopoiesis in the bone marrow. Systemic toxicity was shown to decrease with increasing alkyl chain lengths and/or alkoxylation degrees (ECETOC, 2005; US EPA, 2010). The chemicals ethylene glycol hexyl ether (with a longer alkyl chain length, CAS No. 112-25-4) and diethylene glycol butyl ether (with a higher ethoxylation degree, CAS No. 112-34-5) have no evidence of systemic effects including haemolysis. Commercially available AAs are mixtures of homologues of varying carbon chain lengths and it is possible that some of the chemicals with an average alkyl chain length C >= 6 may also contain shorter alkyl chains C < 6. It is not practical to quantify the proportion of shorter C < 6 chain lengths present in such chemicals, or these shorter chain lengths may not be present at all. The available data suggest a lack of systemic toxicity for the AE chemicals with potential short alkyl chain presence (NICNASa); therefore, the toxicity of the chemicals in this assessment is unlikely to be significantly affected by the presence of shorter chain alkyl groups. Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units: EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41 EO > 15-20 gives Harmful (Xn) with R22-41 >20 EO is not classified (CESIO 2000) Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) . Issue Date: **10/03/2023**Print Date: **14/07/2023** AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity. The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intraspecies extrapolations. AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust. In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use. For high boiling ethylene glycol ethers (typically triethylene- and tetraethylene glycol ethers): Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm2/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME are at least 100-fold less than EGME, EGEE, and EGBE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/ cm2/hr. Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the diethylene glycol series is larger than that of the diethylene glycol to triethylene glycol series, the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetraethylene glycol methyl; ether (TetraME) and tetraethylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGME and TGBE, the differences in permeation between these molecules may only be slight. **Metabolism:** The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acids. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected *in vivo*. The principal metabolite of TGME is believed to be 2-[2-(2-methoxyethoxy)ethoxy] acetic acid. Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers. The metabolites of category members are not likely to be metabolized to any large extent to toxic
molecules such as ethylene glycol or the mono alkoxy acids because metabolic breakdown of the ether linkages also has to occur Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGEE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death. Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGBE are highly irritating to the eyes. Other category members show low eye irritation. Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity In a 21-day dermal study, TGME, TGEE, and TGBE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmic vacuolisation. Due to a high incidence of similar spontaneous changes in normal New Zealand White rabbits , the testicular effects were considered not to be related to treatment . Thus, the NOAELs for TGME, TGEE and TGBE were established at 1000 mg/kg/day. Findings from this report were considered unremarkable A 2-week dermal study was conducted in rats administered TGME at doses of 1,000, 2,500, and 4,000 mg/kg/day. In this study, significantly-increased red blood cells at 4,000 mg/kg/day and significantly-increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had watery caecal contents and/or haemolysed blood in the stomach These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats In a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statistically-significant changes in relative liver weight were observed at 1,200 mg/kg/day and higher. Histopathological effects included hepatocellular cytoplasmic vacuolisation (minimal to mild in most animals) and hypertrophy (minimal to mild) in males at all doses and hepatocellular hypertrophy (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic Mutagenicity: Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to 5,000 micrograms/plate and 5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies performed on category members lessen the concern for carcinogenicity. Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed, several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater that the limit dose of 1,000 mg/kg/day recommended for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TGBE is not associated with Issue Date: **10/03/2023**Print Date: **14/07/2023** testicular toxicity, TetraME is not likely to be metabolised by any large extent to 2-MAA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000 mg/kg/day). Developmental toxicity: The bulk of the evidence shows that effects on the foetus are not noted in treatments with . 1,000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included skeletal variants and decreased body weight gain. #### for nonviphenol: Nonylphenol was studied for oral toxicity in rats in a 28-day repeat dose toxicity test at doses of 0, 4, 15, 60 and 250 mg/kg/day. Changes suggesting renal dysfunction were mainly noted in both sexes given 250 mg/kg. Liver weights were increased in males given 60 mg/kg and in both sexes given 250 mg/kg group. Histopathologically, hypertrophy of the centrilobular hepatocytes was noted in both sexes given 250 mg/kg. Kidney weights were increased in males given 250 mg/kg and macroscopically, disseminated white spots, enlargement and pelvic dilatation were noted in females given 250 mg/kg. Histopathologically, the following lesions were noted in the 250 mg/kg group: basophilic change of the proximal tubules in both sexes, single cell necrosis of the proximal tubules, inflammatory cell infiltration in the interstitium and casts in females, basophilic change and dilatation of the collecting tubules in both sexes, simple hyperplasia of the pelvic mucosa and pelvic dilatation in females. In the urinary bladder, simple hyperplasia was noted in both sexes given 250 mg/kg. Almost all changes except those in the kidney disappeared after a 14-day recovery period. The NOELs for males and females are considered to be 15 mg/kg/day and 60 mg/kg/day, respectively, under the conditions of the present study. Nonylphenol was not mutagenic to Salmonella typhimurium, TA100, TA1535, TA98, TA1537 and Escherichia coli WP2 uvrA, with or without an exogeneous metabolic activators system. Nonylphenol induced neither structural chromosomal aberrations nor polyploidy in CHL/IU cells, in the absence or presence of an exogenous metabolic activation system. #### WATER No significant acute toxicological data identified in literature search. #### ETHYLENE GLYCOL MONOBUTYL ETHER & NONYLPHENOL, ETHOXYLATED The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. | Acute Toxicity | ~ | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | ✓ | | Mutagenicity | × | Asniration Hazard | × | Legend: X – Data either not available or does not fill the criteria for classification Justin – Data available to make classification # **SECTION 12 Ecological information** ### **Toxicity** | Citraclean | Endpoint | Test Duration (hr) | Species | Value | Source | |------------------------------------|------------------|--------------------|-------------------------------|-------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 0.214mg/l | 2 | | d-limonene | EC50 | 48h | Crustacea | 0.307mg/l | 2 | | | LC50 | 96h | Fish | 0.46mg/l | 2 | | | NOEC(ECx) | 0h | Algae or other aquatic plants | <0.05-1.5mg/l | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 623mg/l | 2 | | athedays about manaboted | EC50 | 48h | Crustacea | Crustacea 164mg/l | | | ethylene glycol monobutyl
ether | EC50 | 96h | Algae or other aquatic plants | 720mg/l | 2 | | | LC50 | 96h | Fish | 1700mg/l | Not
Available | | | EC10(ECx) | 48h | Crustacea | 7.2mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | BCF | 1008h | Fish | <0.2 | 7 | | | EC50 | 48h | Crustacea | 86mg/l | Not
Availabl | | nonylphenol, ethoxylated | EC50 | 96h | Algae or other aquatic plants | 12mg/l | 4 | | | EC50(ECx) | 48h | Crustacea | 86mg/l | Not
Availabl | | | LC50 | 96h | Fish | 1-1.8mg/l | 4 | | water | Endpoint | Test Duration (hr) | Species | Value | Source | | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | Chemwatch: 24-9182 Version No: 5.1 Page **16** of **19** Citraclean Issue Date: **10/03/2023**Print Date: **14/07/2023** #### Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 8. Vendor Data Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. **DO NOT**
discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------------------|---------------------------|-----------------------------| | d-limonene | HIGH | HIGH | | ethylene glycol monobutyl ether | LOW (Half-life = 56 days) | LOW (Half-life = 1.37 days) | | nonylphenol, ethoxylated | LOW | LOW | | water | LOW | LOW | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---------------------------------|------------------------| | d-limonene | HIGH (LogKOW = 4.8275) | | ethylene glycol monobutyl ether | LOW (BCF = 2.51) | | nonylphenol, ethoxylated | LOW (BCF = 16) | #### Mobility in soil | Ingredient | Mobility | |---------------------------------|------------------| | d-limonene | LOW (KOC = 1324) | | ethylene glycol monobutyl ether | HIGH (KOC = 1) | | nonylphenol, ethoxylated | LOW (KOC = 940) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - ▶ Recycle wherever possible or consult manufacturer for recycling options. - ► Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. # **SECTION 14 Transport information** # **Labels Required** Marine Pollutant HAZCHEM •3Z ## Land transport (ADG) | -uuuepu () | | | | |------------------------------|--|--|--| | UN number or ID number | 3082 | | | | UN proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains d-limonene) | | | | Transport hazard class(es) | Class 9 Subsidiary risk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Environmentally hazardous | | | | Special precautions for user | Special provisions 274 331 335 375 AU01 Limited quantity 5 L | | | Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082 are not subject to this Code when transported by road or rail in; - (a) packagings; - (b) IBCs; or - (c) any other receptacle not exceeding 500 kg(L). - Australian Special Provisions (SP AU01) ADG Code 7th Ed. Issue Date: 10/03/2023 Print Date: 14/07/2023 #### Air transport (ICAO-IATA / DGR) | UN number | 3082 | | | | |------------------------------|---|--|--------------------|--| | UN proper shipping name | Environmentally hazardo | ous substance, liquid, n.o.s. (contains d- | limonene) | | | | ICAO/IATA Class | 9 | | | | Transport hazard class(es) | ICAO / IATA Subrisk | Not Applicable | | | | | ERG Code | 9L | | | | Packing group | III | | | | | Environmental hazard | Environmentally hazardous | | | | | | Special provisions | | A97 A158 A197 A215 | | | | Cargo Only Packing Instructions | | 964 | | | | Cargo Only Maximum Qty / Pack | | 450 L | | | Special precautions for user | Passenger and Cargo Packing Instructions | | 964 | | | | Passenger and Cargo Maximum Qty / Pack | | 450 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y964 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 30 kg G | | # Sea transport (IMDG-Code / GGVSee) | UN number | 3082 | | | |------------------------------|---|---------------------|--| | UN proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains d-limonene) | | | | Transport hazard class(es) | IMDG Class 9 IMDG Subrisk Not Applicable | | | | Packing group | III . | | | | Environmental hazard | Marine Pollutant | | | | Special precautions for user | | A, S-F
4 335 969 | | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |---------------------------------|---------------| | d-limonene | Not Available | | ethylene glycol monobutyl ether | Not Available | | nonylphenol, ethoxylated | Not Available | | water | Not Available | ### Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |---------------------------------|---------------| | d-limonene | Not Available | | ethylene glycol monobutyl ether | Not Available | | nonylphenol, ethoxylated | Not Available | | water | Not Available | # **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture # d-limonene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic # ethylene glycol monobutyl ether is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - nonylphenol, ethoxylated is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic Page 18 of 19 Citraclean Issue Date: 10/03/2023 Print Date: 14/07/2023 Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 water is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List #### **National Inventory Status** | National Inventory | Status | | | |--|--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | | Canada - DSL | Yes | | | | Canada - NDSL | No (d-limonene; ethylene glycol monobutyl ether; nonylphenol, ethoxylated; water) | | | | China - IECSC | Yes | | | | Europe - EINEC / ELINCS / NLP | Yes | | | | Japan - ENCS | Yes | | | | Korea - KECI | Yes | | | | New Zealand - NZIoC | Yes | | | | Philippines - PICCS | Yes | | | | USA - TSCA | Yes | | | | Taiwan - TCSI | Yes | | | | Mexico - INSQ | Yes | | | | Vietnam - NCI | Yes | | | | Russia - FBEPH | Yes | | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | | #### **SECTION 16 Other information** | Revision Date | 10/03/2023 | |---------------|------------| | Initial Date | 01/11/2009 | #### SDS Version Summary | Version | Date of Update | Sections Updated | |---------|----------------|---| | 4.1 | 23/12/2022 | Classification review due to GHS Revision change. | | 5.1 | 10/03/2023 | Classification change due to full database hazard calculation/update. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC - TWA: Permissible Concentration-Time Weighted Average PC - STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit, IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act Chemwatch: 24-9182 Version No: 5.1 Page 19 of 19 Issue Date: 10/03/2023 Print Date: 14/07/2023 TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. Citraclean TEL (+61 3) 9572 4700.