NV Chemicals Chlorinated Detergent N.V. Chemicals (Aust) Pty Ltd Chemwatch: 23-5749 Version No: 4.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements ### Chemwatch Hazard Alert Code: 4 Issue Date: 23/12/2022 Print Date: 14/07/2023 L.GHS.AUS.EN.E # SECTION 1 Identification of the substance / mixture and of the company / undertaking ### **Product Identifier** | Product name | NV Chemicals Chlorinated Detergent | |-------------------------------|--| | Chemical Name | Not Applicable | | Synonyms | Not Available | | Proper shipping name | CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S. (contains sodium hydroxide) | | Chemical formula | Not Applicable | | Other means of identification | Not Available | ### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Self foaming cleaner sanitiser especially for food industry use. ### Details of the manufacturer or supplier of the safety data sheet | Registered company name | N.V. Chemicals (Aust) Pty Ltd | |-------------------------|----------------------------------| | Address | 24 Lisa Place VIC 3048 Australia | | Telephone | 9351 1100 | | Fax | 9351 1077 | | Website | Not Available | | Email | info@nvchemicals.com.au | ### Emergency telephone number | Association / Organisation | N.V. Chemicals (Aust) Pty Ltd | |-----------------------------------|-------------------------------| | Emergency telephone numbers | 93511100 | | Other emergency telephone numbers | Not Available | # **SECTION 2 Hazards identification** ### Classification of the substance or mixture # HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. # Chemwatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 0 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 4 | i | 1 = Low | | Reactivity | 0 | | 2 = Moderate | | Chronic | 0 | | 3 = High
4 = Extreme | | Poisons Schedule | S6 | |-------------------------------|---| | Classification ^[1] | Skin Corrosion/Irritation Category 1A, Serious Eye Damage/Eye Irritation Category 1, Hazardous to the Aquatic Environment Acute Hazard Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | Issue Date: 23/12/2022 Print Date: 14/07/2023 ### Label elements ### Hazard pictogram(s) Signal word Danger ### Hazard statement(s) | AUH031 | Contact with acid liberates toxic gas. | |--------|--| | H314 | Causes severe skin burns and eye damage. | | H401 | Toxic to aquatic life. | ### Precautionary statement(s) Prevention | P260 | Do not breathe mist/vapours/spray. | |------|--| | P264 | Wash all exposed external body areas thoroughly after handling. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P273 | Avoid release to the environment. | ### Precautionary statement(s) Response | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | |----------------|--| | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | P363 | Wash contaminated clothing before reuse. | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | ### Precautionary statement(s) Storage P405 Store locked up. ### Precautionary statement(s) Disposal Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ### **SECTION 3 Composition / information on ingredients** ### **Substances** See section below for composition of Mixtures ### **Mixtures** | CAS No | %[weight] | Name | |---------------|---|---| | 1310-73-2 | <10 | sodium hydroxide | | 7681-52-9 | <10 | sodium hypochlorite | | 1300-72-7 | <10 | sodium xylenesulfonate | | 1643-20-5 | <10 | lauryldimethylamine oxide | | 9004-82-4 | <10 | sodium lauryl ether sulfate | | 7732-18-5 | >60 | <u>water</u> | | Not Available | | Available chlorine 5.5% | | Legend: | Classified by Chemwatch; 2. Classification of Classification drawn from C&L * EU IOELVs a | drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4.
vailable | ### **SECTION 4 First aid measures** # Description of first aid measures If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. - ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - Transport to hospital or doctor without delay. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. ### **Skin Contact** **Eye Contact** - ▶ Immediately remove all contaminated clothing, including footwear. - Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. Chemwatch: 23-5749 Page 3 of 16 Issue Date: 23/12/2022 Version No: 4.1 Print Date: 14/07/2023 ### **NV Chemicals Chlorinated Detergent** | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | |------------|---| | Ingestion | For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. | ### Indication of any immediate medical attention and special treatment needed Treat symptomatically. For acute or short-term repeated exposures to highly alkaline materials: - Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxygen is given as indicated. - The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure. Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. - Supportive care involves the following: Withhold oral feedings initially. - ▶ If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - ▶ Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). SKIN AND EYE: Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] ### **SECTION 5 Firefighting measures** # **Extinguishing media** - ► Water spray or fog. - Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. ### Special hazards arising from the substrate or mixture | Fire Incompatibility | ▶ Reacts with aluminium /
zinc producing flammable, explosive hydrogen gas | | |-------------------------|--|--| | Advice for firefighters | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | | Fire/Explosion Hazard | Non combustible. Not considered to be a significant fire risk. Expansion or decomposition on heating may lead to violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposes on heating and produces toxic fumes of: carbon dioxide (CO2) chlorides | | ### **SECTION 6 Accidental release measures** **HAZCHEM** ### Personal precautions, protective equipment and emergency procedures nitrogen oxides (NOx) sulfur oxides (SOx) May emit corrosive fumes See section 8 Chemwatch: 23-5749 Page 4 of 16 Version No: 4.1 NV Chemicals Chlorinated Detergent Issue Date: **23/12/2022**Print Date: **14/07/2023** # **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | | |--------------|--|--| | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. | | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** | Precautions for safe handling | | |-------------------------------|---| | Safe handling | Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. DO NOT allow clothing wet with material to stay in contact with skin | | Other information | Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | # Conditions for safe storage, including any incompatibilities | | - | |-------------------------|---| | Suitable container | Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. | | Storage incompatibility | Contact with acids produces toxic fumes of chlorine Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. | # SECTION 8 Exposure controls / personal protection # **Control parameters** ### Occupational Exposure Limits (OEL) # INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|------------------|------------------|---------------|---------------|---------|---------------| | Australia Exposure Standards | sodium hydroxide | Sodium hydroxide | Not Available | Not Available | 2 mg/m3 | Not Available | ## **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------|---------------|---------------|---------------| | sodium hydroxide | Not Available | Not Available | Not Available | | sodium hypochlorite | 13 mg/m3 | 140 mg/m3 | 290 mg/m3 | | sodium hypochlorite | 2 mg/m3 | 290 mg/m3 | 1.800 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |------------------------|---------------|---------------| | sodium hydroxide | 10 mg/m3 | Not Available | | sodium hypochlorite | Not Available | Not Available | | sodium xylenesulfonate | Not Available | Not Available | Issue Date: 23/12/2022 Chemwatch: 23-5749 Page 5 of 16 Version No: 4.1 Print Date: 14/07/2023 ### **NV Chemicals Chlorinated Detergent** | Ingredient | Original IDLH | Revised IDLH | |-----------------------------|---------------|---------------| | lauryldimethylamine oxide | Not Available | Not Available | | sodium lauryl ether sulfate | Not Available | Not Available | | water | Not Available | Not Available | ### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |-----------------------------|--|--|--| | sodium hypochlorite | С | > 0.1 to ≤ milligrams per cubic meter of air (mg/m³) | | | sodium xylenesulfonate | E | ≤ 0.01 mg/m³ | | | lauryldimethylamine oxide | С | > 0.1 to ≤ milligrams per cubic
meter of air (mg/m³) | | | sodium lauryl ether sulfate | ≦ ≤ 0.01 mg/m³ | | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | ### MATERIAL DATA None assigned. Refer to individual constituents. ### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. ## Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Individual protection measures, such as personal protective equipment - ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure. - Chemical goggles. Whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. [AS/NZS 1337.1, EN166 or national equivalent] - Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection. ### Eye and face protection - Alternatively a gas mask may replace splash goggles and face shields. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. ### Skin protection See Hand protection below Air Coood Version No: 4.1 ### **NV Chemicals Chlorinated Detergent** Issue Date: **23/12/2022**Print Date: **14/07/2023** ### ### Recommended material(s) ### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: NV Chemicals Chlorinated Detergent | Material | СРІ | |-------------------|-----| | NEOPRENE | А | | BUTYL | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | SARANEX-23 | С | | SARANEX-23 2-PLY | С | | TEFLON | С | | VITON | С | | VITON/CHLOROBUTYL | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion $\mbox{NOTE}.$ As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - ### Respiratory protection Type ABK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | ABK-AUS /
Class1 P3 | - | | up to 50 | 1000 | - | ABK-AUS /
Class 1 P3 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | ABK-2 P3 | | up to 100 | 10000 | - | ABK-3 P3 | | 100+ | | | Airline** | * - Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) ### **SECTION 9 Physical and chemical properties** ### Information on basic physical and chemical properties | Appearance | Clear pale amber highly alkaline liquid with chlorine odour; mixes with water. | | | | |--|--|---|----------------|--| | | | | | | | Physical state | Liquid | Relative density (Water = 1) | 1.12 | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | | pH (as supplied) | Not Available | Decomposition temperature (°C) | Not Available | | | Melting point / freezing point (°C) | <0 | Viscosity (cSt) | Not Available | | | Initial boiling point and boiling range (°C) | >100 | Molecular weight (g/mol) | Not Applicable | | | Flash point (°C) | Not Applicable | Taste | Not Available | | | Evaporation rate | Not Available | Explosive properties | Not Available | | | Flammability | Not Applicable | Oxidising properties | Not Available | | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | ^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or
convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. Chemwatch: 23-5749 Page 7 of 16 Version No: 4.1 # **NV Chemicals Chlorinated Detergent** Issue Date: 23/12/2022 Print Date: 14/07/2023 | Solubility in water | Miscible | pH as a solution (1%) | 12.5-13.5 | |--------------------------|---------------|-----------------------|---------------| | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 Toxicological information** Eye Chronic ### Information on toxicological effects | | individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the | |---------|---| | | irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, | | | may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract | | | irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular | | Inhaled | system. | | imaleu | Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. | | | Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours. | | | | Symptoms may include a tightness in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. # Ingestion of alkaline corrosives may produce immediate pain, and circumoral burns. Mucous membrane corrosive damage is characterised by a white appearance and soapy feel; this may then become brown, oedematous and ulcerated. Profuse salivation with an inability to swallow or speak may also result. Even where there is limited or no evidence of chemical burns, both the oesophagus and stomach may experience a burning pain; vomiting and diarrhoea may follow. The vomitus may be thick and may be slimy (mucous) and may eventually contain blood and shreds of mucosa. Epiglottal oedema may result in respiratory distress and asphyxia. Marked hypotension is symptomatic of shock; a weak and rapid pulse, shallow respiration and clammy skin may also be evident. Circulatory collapse may occur and, if uncorrected, may produce renal failure. Severe exposures may result in oesophageal or gastric perforation accompanied by mediastinitis, substernal pain, peritonitis, abdominal rigidity and fever. Although oesophageal, gastric or pyloric stricture may be evident initially, these may occur after weeks or even months and years. Death may be quick and results from asphyxia, circulatory collapse or aspiration of even minute amounts. Death may also be delayed as a result of perforation, pneumonia or the effects of stricture formation. # The material can produce severe chemical burns following direct contact with the skin. Skin Contact Skin contact with alkaline corrosives may produce severe pain and burns; brownish stains may develop. The corroded area may be soft, gelatinous and necrotic; tissue destruction may be deep. Skin contact will result in rapid drying, bleaching, leading to chemical burns on prolonged contact Direct contact with alkaline corrosives may produce pain and burns. Oedema, destruction of the epithelium, corneal opacification and iritis may occur. In less severe cases these symptoms tend to resolve. In severe injuries the full extent of the damage may not be immediately apparent with late complications comprising a persistent oedema, vascularisation and corneal scarring, permanent opacity, staphyloma, cataract, symblepharon and loss of sight. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. | NV Chemicals Chlorinated
Detergent | TOXICITY | IRRITATION | |---------------------------------------|--|--| | | Not Available | Not Available | | sodium hydroxide | тохісіту | IRRITATION | | | Dermal (rabbit) LD50: 1350 mg/kg ^[2] | Eye (rabbit): 0.05 mg/24h SEVERE | | | Oral (Rabbit) LD50; 325 mg/kg ^[1] | Eye (rabbit):1 mg/24h SEVERE | | | | Eye (rabbit):1 mg/30s rinsed-SEVERE | | | | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (rabbit): 500 mg/24h SEVERE | | | | Skin: adverse effect observed (corrosive) ^[1] | | | TOXICITY | IRRITATION | | sodium hypochlorite | Dermal (rabbit) LD50: >10000 mg/kg ^[1] | Eye (rabbit): 10 mg - moderate | | | Inhalation(Rat) LC50: >2.625 mg/l4h ^[1] | Eye (rabbit): 100 mg - moderate | | | Oral (Mouse) LD50; 5800 mg/kg ^[2] | Skin (rabbit): 500 mg/24h-moderate | Chemwatch: 23-5749 Page 8 of 16 Version No: 4.1 NV Chemicals Chlorinated Detergent Page 8 of 16 Issue Date: 23/12/2022 Print Date: 14/07/2023 | | TOXICITY | IRRITATION | |-----------------------------|--|--| | sodium xylenesulfonate | Oral (Rat) LD50: >10 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | lauryldimethylamine oxide | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 50 ug/24h - SEVERE | | | Oral (Rat) LD50: >600 mg/kg ^[1] | Skin (rabbit): 2 mg/24h - SEVERE | | sodium lauryl ether sulfate | TOXICITY | IRRITATION | | | Oral (Rat) LD50: 1600 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (rabbit):25 mg/24 hr moderate | | | | Skin: adverse effect observed (irritating) ^[1] | | water | TOXICITY | IRRITATION | | | Oral (Rat) LD50: >90000 mg/kg ^[2] | Not Available | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | as sodium hypochlorite pentahydrate Hypochlorite salts are classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Most of the data for toxicity of hypochlorites by the oral route are from studies performed with sodium hypochlorite or chlorine gas. In biological systems, characterised by pH values in the range of 6-8, the most abundant active chemical species is (hypochlorous acid) HOCl, in equilibrium with hyochlorite anion (CiO-). Such available chlorine is readily absorbed via the oral route and distributed into plasma, bone marrow, testis, skin, kidney and lung. Only about. 50% is excreted mainly with the urine followed by excretion with faeces. HOCl is not enzymatically metabolised. Acute toxicity: The acute oral LD50 of calcium hypochlorite was 790 mg/kg in male rats. Inhalation exposures to concentrations of greater than about 500 ppm (10 min or more) may be fatal for rats. Based on human experience and control studies in volunteers, it can be concluded that the acute NOAEL for humans was considered to be 0.5 ppm (1.5 mg/m3). Hypochlorite salts are extremely corrosive and can cause severe damage to the eyes and skin. Calcium hypochlorite is reported to be corrosive to the skin and has severe effects that can be expected from exposure to the eyes, which is ascribable to the alkalinity of calcium cation (pH=12.0 at 1 % as free available chlorine (FAC*)). Moderate to severe lesions in the respiratory tract were reported after exposure to chlorine that may emerge in case of accidental misuse of hypochlorite salts. Exposure to chlorine at 9 ppm (27 mg/m3) for 6 h/day during 1, 3 and 5 days was reported to cause epithelial necrosis, cellular exfoliation, erosion, ulceration and squamous metaplasia in the nasal passage of rats and mice. For either of Ca or Na salt, reliable skin sensitisation studies are not available and case reports are available but no reliable case report could be found showing a sensitisation potential in humans. Repeat dose toxicity: In a 13-week study, male and female F-344 rats (10/sex/group) received sodium
hypochlorite (NaClO) in drinking water at level of 0.025, 0.05, 0.1, 0.2, or 0.4 %. A weight gain was significantly decreased in male rats at 0.2 and 0.4 % and in females at 0.4 %. These effects were dose related and obviously correlated with reduced water consumption. No histopathological changes attributable to the treatment were found. But an increase of AAT in the blood gave evidence of the adverse effects on the liver. Based on significant body-weight reduction at the top dose, a subchronic NOAEL of 59.5 mg/kg bw/day as free available chlorine (FAC*) (at 0.1% NaClO level in the drinking water) can be calculated for male rats. ### SODIUM HYPOCHLORITE For female rats a subchronic NOAEL of 215.7 mg/kg bw/day as FAC (at 0.2 % NaClO level in the drinking water) can be calculated. A NOAEL of 950 ppm available chlorine (59.5 mg/kg bw/day) can be derived from a 13-week rat study with sodium hypochlorite in drinking water. In a life-time guideline NTP-study, 70 male and female F344 rats and B6C3F1 mice were administered chlorine via drinking water at dose levels of 0, 70, 140 and 275 mg (equivalent to FAC)/L in buffered water. These concentrations were equivalent to 0, 4.8, 7.5 and 13.9 mg/kg bw/day for male rats and 0, 3.8, 6.9 and 13.2 mg/kg bw/day for female rats. Mean body weights of male and female rats were similar among treated and control groups at both 14-week and 66-week interim evaluations. Those of male mice were significantly lower at week 66. Dose-related decrease in water consumption was observed throughout the study in both species and sexes. Food consumption was comparable among chlorine-treated and control groups. There were no clinical findings, alterations in haematological parameters and biologically significant differences in relative organ weights attributable to the treatment at 14/15-week and 66-week interim evaluations. Survival rate in chlorine-treated groups of rats and mice were similar to those of the controls after two groups. There was no evidence for non-neoplastic lesions to be associated with the consumption of chlorinated drinking water [NTP, 1992]. Based on these findings, a NOAEL (chronic) can be calculated to be approximately 14 mg available chlorine /kg bw/day for rats and 22.5 mg available chlorine /kg bw/day for mice. **Reproductive toxicity:** No reproductive toxic effects were shown up to 5 mg/kg (highest dose tested) of sodium salt (equivalent to 4.8 mg/kg of calcium salt) in a one generation oral study in rats. No evidence of adverse developmental effects were reported in animals. Moreover, epidemiological studies in humans did not show any evidence of toxic effects on reproduction and development. **Genotoxicity:** There are data from in vitro studies to suggest that solutions of chlorine/hypochlorite have some mutagenic potential, but it can be concluded that they are not mutagenic in vivo. No carcinogenicity was observed in mice or rats exposed by inhalation to chlorine and orally to sodium hypochlorite, except some equivocal results were reported for female rats by oral route. For human carcinogenicity, no causal relationship between hypochlorite exposure and tumour incidence was observed. The observation is applicable to calcium hypochlorite. A number of fibrosarcomas and squamous cell carcinomas were observed in mice treated dermally with repeated subcarcinogenic doses of 4-nitroquinoline-1-oxide, followed by dermal treatment with sodium hypochlorite. # SODIUM XYLENESULEONATE for alkyl sulfates; alkane sulfonates and alpha-olefin sulfonates Most chemicals of this category are not defined substances, but mixtures of homologues with different alkyl chain lengths. Alpha-olefin sulfonates are mixtures of alkene sulfonate and hydroxyl alkane sulfonates with the sulfonate group in the terminal position and the double bond, or hydroxyl group, located at a position in the vicinity of the sulfonate group. Common physical and/or biological pathways result in structurally similar breakdown products, and are, together with the surfactant properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health. Acute toxicity: These substances are well absorbed after ingestion; penetration through the skin is however poor. After absorption, these chemicals are distributed mainly to the liver. Acute oral LD50 values of alkyl sulfates in rats and/or mice were (in mg/kg): Issue Date: 23/12/2022 Chemwatch: 23-5749 Page 9 of 16 Version No: 4.1 ### **NV Chemicals Chlorinated Detergent** Print Date: 14/07/2023 C10-: 290-580 C10-16-, and C12-; 1000-2000 C12-14, C12-15, C12-16, C12-18 and C16-18-; >2000 C14-18, C16-18-; >5000 The clinical signs observed were non-specific (piloerection, lethargy, decreased motor activity and respiratory rate, diarrhoea). At necropsy the major findings were irritation of the gastrointestinal tract and anemia of inner organs. Based on limited data, the acute oral LD50 values of alkane sulfonates and alpha-olefin sulfonates of comparable chain lengths are assumed to be in the same range. The counter ion does not appear to influence the toxicity in a substantial way. Acute dermal LD50 values of alkyl sulfates in rabbits (mg/ kg): C12-; 200 C12-13 and C10-16-;>500 Apart from moderate to severe skin irritation, clinical signs included tremor, tonic-clonic convulsions, respiratory failure, and body weight loss in the study with the C12- alkyl sulfate and decreased body weights after administration of the C10-16- alkyl sulfates. No data are available for alkane sulfonates but due to a comparable metabolism and effect concentrations in long-term studies effect concentrations are expected to be in the same range as found for alkyl sulfates. There are no data available for acute inhalation toxicity of alkyl sulfates, alkane sulfonates or alpha-olefin sulfonates. In skin irritation tests using rabbits (aqueous solutions, OECD TG 404): C8-14 and C8-16 (30%), C12-14 (90%), C14-18 (60%)- corrosive Under occlusive conditions: C12, and C12-14 (25%), C12-15-, C13-15 and C15-16 (5-7%) - moderate to strong irritants Comparative studies investigating skin effects like transepidermal water loss, epidermal electrical conductance, skin swelling, extraction of amino acids and proteins or development of erythema in human volunteers consistently showed a maximum of effects with C12-alkyl sulfate, sodium; this salt is routinely used as a positive internal control giving borderline irritant reactions in skin irritation studies performed on humans. As the most irritant alkyl sulfate it can be concluded that in humans 20% is the threshold concentration for irritative effects of alkyl sulfates in general. No data were available with regard to the skin irritation potential of alkane sulfonates. Based on the similar chemical structure they are assumed to exhibit similar skin irritation properties as alkyl sulfates or alpha-olefin sulfonates of comparable chain lengths. In eye irritation tests, using rabbits, C12-containing alkyl sulfates (>10% concentration) were severely irritating and produced irreversible corneal effects. With increasing alkyl chain length, the irritating potential decreases, and C16-18 alkyl sulfate sodium, at a concentration of 25%, was only Concentrated C14-16- alpha-olefin sulfonates were severely irritating, but caused irreversible effects only if applied as undiluted powder. At concentrations below 10% mild to moderate, reversible effects, were found. No data were available for alkane sulfonates Alkyl sulfates and C14-18 alpha-olefin sulfonates were not skin sensitisers in animal studies. No reliable data were available for alkane sulfonates. Based on the similar chemical structure, no sensitisation is expected. However anecdotal evidence suggests that sodium lauryl sulfate causes pulmonary sensitisation resulting in hyperactive airway dysfunction and pulmonary allergy accompanied by fatigue, malaise and aching. Significant symptoms of exposure can persist for more than two years and can be activated by a variety of non-specific environmental stimuli such as a exhaust, perfumes and passive smoking. Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies. Repeated skin contact with some sulfonated surfactants has produced sensitisation dermatitis in predisposed individuals Repeat dose toxicity: After repeated oral application of alkyl sulfates with chain lengths between C12 and C18, the liver was the only target organ for systemic toxicity. Adverse effects on this organ included an increase in liver weight, enlargement of liver cells, and elevated levels of liver enzymes. The LOAEL for liver toxicity (parenchymal hypertrophy and an increase in comparative liver weight) was 230 mg/kg/day (in a 13 week study with C16-18 alkyl sulfate, sodium). The lowest NOAEL in rats was 55 mg/kg/day (in a 13 week study with C12-alkyl sulfate, sodium). C14- and C14-16-alpha-olefin sulfonates produced NOAELs of 100 mg/kg/day (in 6 month- and 2 year studies). A reduction in body weight gain was the only adverse effect identified in these studies. No data were available with regard to the repeated dose toxicity of alkane sulfonates. Based on the similarity of metabolic pathways between alkane sulfonates, alkyl sulfates and alkyl-olefin sulfonates, the repeated dose toxicity of alkane sulfonates is expected to be similar with NOAEL and LOAEL values in the same range as for alkyl sulfates and alpha-olefin sulfonates, i.e. 100 and 200-250 mg/kg/day, respectively, with the liver as potential target organ. Genotoxicity: Alkyl sulfates of different chain lengths and with different counter ions were not
mutagenic in standard bacterial and mammalian cell systems both in the absence and in the presence of metabolic activation. There was also no indication for a genotoxic potential of alkyl sulfates in various in vivo studies on mice (micronucleus assay, chromosome aberration test, and dominant lethal assay). alpha-Olefin sulfonates were not mutagenic in the Ames test, and did not induce chromosome aberrations in vitro. No genotoxicity data were available for alkane sulfonates. Based on the overall negative results in the genotoxicity assays with alkyl sulfates and alpha-olefin sulfonates, the absence of structural elements indicating mutagenicity, and the overall database on different types of sulfonates, which were all tested negative in mutagenicity assays, a genotoxic potential of alkane sulfonates is not expected. Carcinogenicity: Alkyl sulfates were not carcinogenic in feeding studies with male and female Wistar rats fed diets with C12-15 alkyl sulfate sodium for two years (corresponding to doses of up to 1125 mg/kg/day). alpha-Olefin sulfonates were not carcinogenic in mice and rats after dermal application, and in rats after oral exposure. No carcinogenicity studies were available for the alkane sulfonates Reproductive toxicity: No indication for adverse effects on reproductive organs was found in various oral studies with different alkyl sulfates. The NOAEL for male fertility was 1000 mg/kg/day for sodium dodecyl sulfate. In a study using alpha-olefin sulfonates in male and female rats, no adverse effects were identified up to 5000 ppm. Developmental toxicity: In studies with various alkyl sulfates (C12 up to C16-18- alkyl) in rats, rabbits and mice, effects on litter parameters were restricted to doses that caused significant maternal toxicity (anorexia, weight loss, and death). The principal effects were higher foetal loss and increased incidences of total litter losses. The incidences of malformations and visceral and skeletal anomalies were unaffected apart from a higher incidence of delayed ossification or skeletal variation in mice at > 500 mg/kg bw/day indicative of a delayed development. The lowest reliable NOAEL for maternal toxicity was about 200 mg/kg/day in rats, while the lowest NOAELs in offspring were 250 mg/kg/day in rats and 300 mg/kg/day for mice and rabbits. For alpha-olefin sulfonates (C14-16-alpha-olefin sulfonate, sodium) the NOAEL was 600 mg/kg/day both for maternal and developmental toxicity. No data were available for the reproductive and developmental toxicity of alkane sulfonates. Based on the available data, the similar toxicokinetic properties and a comparable metabolism of the alkyl sulfates and alkane sulfonates, alkane sulfonates are not considered to be developmental Although the database for category members with C<12 is limited, the available data are indicating no risk as the substances have comparable Chemwatch: 23-5749 Page 10 of 16 Version No: 4.1 ### **NV Chemicals Chlorinated Detergent** Issue Date: 23/12/2022 Print Date: 14/07/2023 toxicokinetic properties and metabolic pathways. In addition, longer-term studies gave no indication for adverse effects on reproductive organs with different alkyl sulfates Toxicological data are available and well documented for representative toluenesulfonates, xylenesulfonates and cumenesulfonates (including sodium, potassium, ammonium and calcium salts). These data demonstrate that hydrotropes have a low order of acute toxicity by all relevant routes (LC50s range from 100s to 1000s mg/kg), are not genotoxic in vitro or in vivo, show no evidence of a carcinogenic response (or any other systemic toxicity) in 2-year dermal exposure studies, and failed to induce developmental, teratogenic or fertility (sex organ) effects. Adverse effects after repeated long term dosing of hydrotropes to animals included epidermal hyperplasia at the site of application in dermal studies, and decreased relative spleen weight in females in oral studies. The critical adverse effect and corresponding systemic NOAEL is 763 mg a.i./kg bw based upon decreased relative spleen weight in female rats in a 90-day oral study. The NOAEL for local effects, based on epidermal hyperplasia at the site of application, was 440 mg a.i./kg bw for mice in 90-day dermal studies. Hydrotropes can be classified as a negligible-to-slight irritant to skin and a slight-to-moderate irritant to eyes. The irritation potential of aqueous solutions of hydrotropes depends on concentration, and the irritation is lessened with rinsing. Hydrotropes are not considered to be skin HERA Report (Hydrotropes) September 2005 Hydrotropes in this category were assessed for mutagen/ genotoxic potential in a variety of assays including the mouse micronucleus, Ames, mouse lymphoma, sister chromatid exchange and chromosome aberration assays. No positive results were seen in vitro or in vivo in any of the studies. For both mice and rats exposed dermally for two years, there was no evidence of carcinogenic potential. Examination of the sex organs (such as prostate, testes or ovaries) from animals in 90-day feeding studies and 90-day and two year dermal studies yielded no evidence to suggest that these chemicals have an adverse affect on the reproductive organs. ### For amine oxides (AOs): sensitisers Substantial data exist for mammalian toxicity by in vitro and in vivo testing. Amine oxides are produced, and transported in aqueous solutions that are 25-35% concentration and most tests were conducted with aqueous solutions in that concentration range. Sometimes aqueous formulations were tested where the AO was at lesser concentrations than 25-35%. Whatever concentration were tested, results are reported below for the active ingredient, amine oxide, in mg AO/kg bw for dermal and oral acute toxicity results and mg AO/kg bw/day for repeated dose studies Toxicokinetic and metabolism studies indicate AOs are extensively metabolised and readily excreted after oral administration. Amine oxide was readily absorbed dermally by rats, mice and rabbits after 24 to 72 hours of exposure. After 8 hours of dermal exposure, humans absorbed <1%. Acute toxicity: In rat oral acute toxicity limit tests, no deaths occurred at single doses of 600 mg C10-16 AO/kg bw or less (for CAS No 70592-80-2). In multi-dose studies, acute oral LD50 values for rats ranged from 846 mg AO/kg bw to 3873 mg AO/kg bw (both values for CAS No 61788-90-7), with several other AOs having rat oral LD50s falling within this range. In single dose acute dermal toxicity limit tests, no deaths occurred at a dose of 520 mg AO/kg bw (CAS No 70592-80-2). This dose was equivalent to 2 mL/kg of a 30% formulation. There were no deaths observed in a rat acute inhalation study to aerosol droplets of a consumer product providing a dose of 0.016 mg AO/L. In a series of studies on rabbits, AOs of varying chain length showed consistent results and all - were not irritating to the skin or eyes at low concentrations (1%), - were moderately irritating at 5%, and right more severely irritating when tested as produced (e.g., ~30% aqueous solutions). In studies that included rinsing, eye irritation effects diminished with rinsing after 30 seconds of exposure and were slight with rinsing after 4 seconds of exposure. In Draize rabbit eye irritation tests using ~30% AO solutions, rabbits experienced severe to moderate irritation. (The maximum concentration of AO is 10% active in consumer products.) Accidental eve exposure in manufacturing employee incidents and consumer incidents established that eye irritation effects of exposure during manufacturing and use of products containing AO and other surfactants are moderate, transient and reversible There is no indication of skin sensitisation for the AO category based on the available animal and human data. ### **LAURYLDIMETHYLAMINE** OXIDE Repeat dose toxicity: In four repeated-dose studies with rats and mice exposed to AO via oral and dermal routes (all with CAS No 70592-80-2), three dermal studies were designed to assess the effect of repeated exposure on skin at maximum doses of 1.5 mg AO/kg-bw/day. Higher doses were tested in a 90-day dietary study with rabbits. No treatment related clinical chemistry, hematology and histopathological changes were observed. In these studies, LOAELs ranged from 87 to 150 mg AO/kg bw/day with the highest oral NOAEL below the lowest LOAEL as 80 mg AO/kg bw/day. Signs of toxicity observed in the oral study included suppressed mean body weight gain, lenticular opacities and diarrhea; in the dermal studies, local dermal irritation was evident. Genetic toxicity: In five in vitro bacterial (Salmonella) mutagenicity studies, AO shows no evidence of mutagenicity either with or without S9 metabolic activation at concentrations up to 250 ug/plate (higher concentrations caused cytotoxicity). Three in vivo studies investigated clastogenic effects on a close structural analog of the category, 1- (methyldodecyl)dimethylamine-N-oxide including: a mouse micronucleus, a Chinese hamster micronucleus and a Chinese hamster cytogenetics study. These studies were all negative showing no increase in micronuclei or chromosome aberrations. An in vivo mouse dominant lethal assay showed no evidence of heritable effects. Two AOs (CAS No 1643-20-5 and CAS No 3332-27-2) were negative in an in vitro cell transformation assay tested at concentrations up to 20 ug/ml. Carcinogenicity: The carcinogenic potential of amine oxides has been thoroughly investigated in three carcinogenicity studies in rats or mice by dermal, dietary, or drinking water routes. In all cases the substances demonstrated no evidence of a carcinogenic response. Reproductive and developmental toxicity: No evidence of reproductive toxicity or fertility effects was observed in a study in which rats were given dietary doses of AO in the diet over two generations (CAS No 1643-20-5). No macroscopic or histopathological changes were attributable to treatment with
the test substance. The maternal NOAEL from this reproductive study was >40 mg AO/kg bw/day, which was the highest dose tested. At all treatment levels, the rate of bodyweight gain for the F1 and F2 offspring was reduced during the lactation period, however, this reduction was not greater than 10%. This effect appeared to be dose-related, but was not statistically significant until after weaning in the mid and high dose levels. This was not considered an adverse effect since the body weight change only reached statistical significance when the rat pups were getting the majority of their calories from solid food (Developmental NOAEL >40 mg/kg bw/day). In three developmental toxicity studies via gavage in rats and rabbits (with CAS No 1643-20-5 & 70592-80-2), effects such as decreased foetal weight or delayed ossification, were most often observed only at maternally toxic doses and were associated with the irritation effects of AO on the gastrointestinal tract. No decreases in litter size, no changes in litter parameters, no malformations or significant differences in skeletal defects were observed at oral doses up to 25 mg/kg bw/day in rats (based on decreased foetal weight at 100 mg/kg bw/day) and >160 mg/kg bw/day in rabbits (the highest dose tested). ### * (CESIO) Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture On the basis of the lower irritancy, nonionic surfactants are often preferred to jonic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers. Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69 Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and ### SODIUM LAURYL ETHER SULFATE Chemwatch: 23-5749 Page 11 of 16 Issue Date: 23/12/2022 Version No: 4.1 ### **NV Chemicals Chlorinated Detergent** Print Date: 14/07/2023 skin conditioners PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations. Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology http://doi.org/10.5487/TR.2015.31.2.105 Alkyl ether sulfates (alcohol or alkyl ethoxysulfates) (AES) (syn: AAASD ,alkyl alcohol alkoxylate sulfates, SLES) are generally classified according to Comité Européen des Agents de Surface et leurs Intermédiaires Organiques (CESIO) as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R36 (Irritating to eyes). An exception has been made for AES (2-3E0) in a concentration of 70-75% where R36 is substituted with R41 (Risk of serious damage to eves). AES are not included in Annex 1 of the list of dangerous substances of Council Directive 67/548/EEC. In assessing this family the Cosmetic Ingredient Review (CIR) Expert Panel recognized that most of the acute oral toxicity, dermal irritation and sensitization, subchronic and chronic oral toxicity, reproductive and developmental toxicity, carcinogenicity, and photosensitization studies have been conducted on ammonium laureth sulfate and sodium laureth sulfate. Sodium and ammonium laureth sulfate have not evoked adverse responses in any toxicological testing, including acute oral toxicity, sub-chronic and chronic oral toxicity, reproductive and develop-mental toxicity, carcinogenicity, and photosensitization studies. These data, however, are considered a sufficient basis for concluding that the other ingredients are safe in the practices of use and concentration described in the safety assessment because of the fundamental chemical similarities between them and because they all are chemically similar salts(salts are expected to be dissociated in any product formulation independent of whether the salt is sodium, ammonium, magnesium, or zinc) of sulfated ethoxylated alcohols, and they all function as surfactants in cosmetic formulations. Based on these considerations, safety test data on one ingredient may be extrapolated to all of them. The panel noted that sodium laureth sulfate and ammonium laureth sulfate can produce eye and/or skin irritation in experimental animals and in some human test subjects; irritation may occur in some users of cosmetic formulations containing these ingredients. The irritant effects, however, are similar to those produced by other detergents, and the severity of the irritation appears to increase directly with concentration Acute toxicity: AES are of low acute toxicity. Neat AES are irritant to skin and eyes. The irritation potential of AES containing solutions depends on concentration. Local dermal effects due to direct or indirect skin contact with AES containing solutions in hand-washed laundry or hand dishwashing are not of concern because AES is not a contact sensitiser and AES is not expected to be irritating to the skin at in-use concentrations. The available repeated dose toxicity data demonstrate the low toxicity of AES. Also, they are not considered to be mutagenic, genotoxic or carcinogenic, and are not reproductive or developmental toxicants. The consumer aggregate exposure from direct and indirect skin contact as well as from the oral route via dishware residues results in an estimated total body burden of 29 ug /kg bw/day. AES are easily absorbed in the intestine in rats and humans after oral administration. Radiolabelled C11 AE3S and C12 AE3S were extensively metabolized in rats and most of the 14C-activity was eliminated via the urine and expired air independently of the route of administration (oral, intraperitoneal or intravenous). The main urinary metabolite from C11 AE3S is propionic acid-3-(3EO)-sulfate. For C12 and C16 AE3S, the main metabolite is acetic acid-2-(3EO)-sulfate. The alkyl chain appears to be oxidised to CO2 which is expired. The EO-chain seems to be resistant to AES are better tolerated on the skin than, e.g., alkyl sulfates and it is generally agreed that the irritancy of AES is lower than that of other anionic surfactants. Alkyl chain lengths of 12 carbon atoms are considered to be more irritating to the skin compared to other chain lengths. The skin irritating properties of AES normally decrease with increasing level of ethoxylation. Undiluted AES should in general be considered strongly irritating. Even at concentrations of 10% moderate to strong effects can be expected. However, only mild to slight irritation was observed when a non-specified AES was applied at 1% to the skin. Subchronic toxicity: A 90-day subchronic feeding study in rats with 1% of AE3S or AE6S with alkyl chain lengths of C12-14 showed only an increased liver/body weight ratio. In a chronic oral study with a duration of 2 years, doses of C12-AE3S of 0.005 - 0.05% in the diet or drinking water had no effects on rats. The concentration of 0.5% sometimes resulted in increased kidney or liver weight. Subchronic 21-day repeat dose dietary studies showed low toxicity of compounds with carbon lengths of C12-15, C12-14 and C13-15 with sodium or ammonium alkyl ethoxylates with POE (polyoxyethylene) n=3. One study indicated that C16-18 POE n=18 had comparable low toxicity. No-observed-adverse-effect levels (NOAELs) range
from 120 to 468 mg/kg/day, similar to a NOAEL from a 90-day rat gavage study with NaC12-14 POE n=2(CAS RN 68891-38-3), which was reported to be 225 mg/kg/day. In addition, another 90-day repeat dose dietary study with NaC12-15 POE n=3 (CAS RN 68424-50-0) resulted in low toxicity, with a NOAEL of greater than approximately 50 mg/kg/day (calculated based on dose of 1000 ppm in diet). Effects were usually related to hepatic hypertrophy, increased liver weight, and related increases in haematological endpoints related to liver enzyme induction. Reproductive and developmental toxicity: No evidence of reproductive and teratogenic effects was seen in a two-generation study in rats fed with a mixture (55:45) of AES and linear alkylbenzene sulfonates. Dietary levels of 0.1, 0.5, and 1% were administered to the rats either continuously or during the period of major organogenesis during six pregnancies. No changes in reproductive or embryogenic parameters were Based on this study an overall no-observed-adverse-effect level (NOAEL) for systemic effects was 0.1%, which was 86.6 mg/kg/day for the F0 generation, and 149.5 mg/kg/day for the F1 generation. The NOAEL of 86.6 mg/kg/day was selected as the toxicology endpoint for the chronic risk assessment for the sulfate derivatives. Carcinogenicity: Chronic dietary studies conducted with rats showed no incidence of cancer and no effects at the concentrations tested (lowest dose tested was ca 75 mg/kg/day). NOTE: Some products containing AES/ SLES have been found to also contain traces (up to 279 ppm) of 1,4-dioxane; this is formed as a by-product during the ethoxylation step of its synthesis. The U.S. Food and Drug Administration recommends that these levels be monitored. The U.S. Environmental Protection Agency classifies 1,4-dioxane to be a probable human carcinogen (not observed in epidemiological studies of workers using the compound, but resulting in more cancer cases in controlled animal studies), and a known irritant with a no-observed-adverseeffects level of 400 milligrams per cubic meter at concentrations significantly higher than those found in commercial products. Under Proposition 65, 1,4-dioxane is classified in the U.S. state of California to cause cancer. The FDA encourages manufacturers to remove 1,4-dioxane, though it is not required by federal law. Sensitising potential: Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-ndodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing ### Toxicokinetics: Following oral exposure, AES is readily absorbed in the gastrointestinal tract in human and rat and excreted principally via the urine or faeces depending on the length of the ethoxylate chain but independently of the route of administration. Once absorbed, AES is extensively metabolized by beta- or omega oxidation. The alkyl chain appears to be oxidized to CO2 which is expired. The EO-chain seems to be resistant to metabolism. Chemwatch: 23-5749 Page 12 of 16 ### **NV Chemicals Chlorinated Detergent** Issue Date: **23/12/2022**Print Date: **14/07/2023** Regarding the different anions, it is expected that the salts will be converted to the acid form in the stomach. This means that for all types of parent chemical the same compound structure eventually enters the small intestine. Hence, the situation will be similar for compounds originating from different salts and therefore no differences in uptake are anticipated. The length of the ethoxylate portion in an AES molecule seems to have an important impact on the biokinetics of AES in humans and in the rat. Alcohol ethoxysulfates with longer ethoxylate chains (>7-9 EO units) are excreted at a higher proportion in the faeces. This is however not of interest for the AES within this category as their ethoxylation grade is 1 to 2.5. Dermal absorption There are two reliable and relevant studies available assessing the dermal absorption rate of AES. The study with AES (C12 -14; 2 EO) Na (CAS 68891-38-3) was performed according to OECD guideline 428 with human skin of the abdomen region (3 donors, n=2). The test substance was applied at a concentration of 10% for 24 h The mean amount removed from the skin surface (skin wash) ranged from 87.16% to 94.56% of the dose applied. The amounts in the receptor could not be quantified, since it was below the analytical limit of quantification (LOQ). The mean recovery in the two first tape strips was 1.48% during all performed experiments. In the further 18 tape strips a mean recovery of 2.86% was documented. The recovery values for the cryocuts have accounted 0.56% in mean. The mean absorbed dose, sum of the amounts found in the viable epidermis, dermis and receptor medium was 0.56%. The mean recovery values have varied from 90.90% to 100.21%, which complies with the acceptance criteria of 100 ± 15%. There is also an in vivo study according to OECD guideline 427 for AES (C12 -14; 2 EO) Na (CAS 68891-38-3) available (Aulmann, 1996). Wistar rats were exposed to 1% aqueous solutions of the test item for 15 min and 48 h under semi-occlusive conditions. The mean amount of AES (C12-14; 2 EO) Na (CAS 68891-38-3) removed from the skin surface after the 15 min exposure period (via washing) ranged from 92.8% to 97.2% of the dose and from 91.6% to 98.4% after 48 h when the skin was not washed until sacrifice. The amounts in faeces and skin could not always be quantified, since it was below the analytical limit of quantification (LOQ). The mean absorbed dose, sum of the amounts found in urine, faeces and skin in the experiment with washing was about 0.1% and 0.9% without washing. The mean recovery values varied from 98.6% to 103%. Taking the results of both studies together the dermal absorption is very low. The in vitro study with human skin indicated the dermal absorption to be 0.56% within 24 h and the in vivo study indicated the dermal absorption to be 0.9% within 48 h. The mean recovery rates on the skin are greater than 87%. These data demonstrate that the test substance remains on the skin surface. Thus, the value of 0.9% dermal absorption is taken for the dermal absorption. ### References Danish EPA - Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products (2001). Environmental Project No. 615, pp. 24-28 HERA (2003). Human & Environmental Risk Assessment on ingredients of European household cleaning products Alcohol Ethoxysulphates, Human Health Risk Assessment Draft, 2003. http://www.heraproject.com. Final Report of the Amended Safety Assessment of Sodium Laureth Sulfate and Related Salts of Sulfated Ethoxylated Alcohols: (nternational Journal of Toxicology 29 (Supplement 3) 151S-161S: 2010 http://journals.sagepub.com/doi/pdf/10.1177/1091581810373151 # SODIUM HYDROXIDE & SODIUM HYPOCHLORITE & SODIUM XYLENESULFONATE & LAURYLDIMETHYLAMINE OXIDE Version No: 4.1 Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. ### SODIUM HYDROXIDE & LAURYLDIMETHYLAMINE OXIDE The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. # SODIUM HYPOCHLORITE & SODIUM LAURYL ETHER SULFATE The material may
produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. ### SODIUM XYLENESULFONATE & SODIUM LAURYL ETHER SULFATE & WATER No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | X | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | X | Legend: 🗶 – Data either not available or does not fill the criteria for classification Data available to make classification ### **SECTION 12 Ecological information** ### Toxicity | NV Chemicals Chlorinated | Endpoint | Test Duration (hr) | Species | Value | Source | |--------------------------|------------------|--------------------|---------------|------------------|------------------| | Detergent | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | sodium hydroxide | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48h | Crustacea | 34.59-47.13mg/l | 4 | | | LC50 | 96h | Fish | 144-267mg/l | 4 | | | EC50(ECx) | 48h | Crustacea | 34.59-47.13mg/l | 4 | Chemwatch: 23-5749 Page 13 of 16 Version No: 4.1 # **NV Chemicals Chlorinated Detergent** Issue Date: 23/12/2022 Print Date: 14/07/2023 | 72h 48h 96h 96h (ECx) 72h int Test Duration (hr) 72h 48h 96h (ECx) 72h | Algae or other aquatic plants Crustacea Algae or other aquatic plants Fish Algae or other aquatic plants Species Algae or other aquatic plants Crustacea Algae or other aquatic plants Algae or other aquatic plants Algae or other aquatic plants | 0.018mg/l 0.01mg/l ~0.1~0.4mg/l >0.023<0.052mg/l 0.005mg/l Value ~252mg/l >400mg/l 40mg/l | 2 4 2 4 2 Source 2 1 2 2 2 1 2 2 2 1 2 2 2 1 1 2 2 2 2 | |---|--|--|---| | 96h 96h 72h Test Duration (hr) 72h 48h 96h (ECx) 72h | Algae or other aquatic plants Fish Algae or other aquatic plants Species Algae or other aquatic plants Crustacea Algae or other aquatic plants | ~0.1~0.4mg/l >0.023<0.052mg/l 0.005mg/l Value ~252mg/l >400mg/l >=230mg/l | 2 4 2 Source 2 1 2 | | 96h (ECx) 72h int Test Duration (hr) 72h 48h 96h (ECx) 72h | Fish Algae or other aquatic plants Species Algae or other aquatic plants Crustacea Algae or other aquatic plants | >0.023<0.052mg/l 0.005mg/l Value | 3 Source 2 1 2 | | (ECx) 72h int Test Duration (hr) 72h 48h 96h (ECx) 72h | Algae or other aquatic plants Species Algae or other aquatic plants Crustacea Algae or other aquatic plants | 0.005mg/l Value ~252mg/l >400mg/l >=230mg/l | 2 Source 2 1 2 | | 72h 48h 96h (ECx) 72h | Species Algae or other aquatic plants Crustacea Algae or other aquatic plants | Value ~252mg/l >400mg/l >=230mg/l | Source 2 1 2 | | 72h
48h
96h
(ECx) 72h | Algae or other aquatic plants Crustacea Algae or other aquatic plants | ~252mg/l
>400mg/l
>=230mg/l | 2
1
2 | | 48h
96h
(ECx) 72h | Crustacea Algae or other aquatic plants | >400mg/l
>=230mg/l | 1 2 | | 96h
(ECx) 72h | Algae or other aquatic plants | >=230mg/l | 2 | | (ECx) 72h | | | | | ` ' | Algae or other aquatic plants | 40mg/l | 0 | | to a Domestica (L.) | | | 2 | | int Test Duration (hr) | Species | Value | Source | | 72h | Algae or other aquatic plants | 0.015mg/l | 2 | | 48h | Crustacea | Crustacea 2.9mg/l | | | 96h | Fish 2.4mg/l | | 2 | | ECx) 72h | Algae or other aquatic plants | Algae or other aquatic plants 0.002mg/l | | | int Test Duration (hr) | Species | Value | Source | | 48h | Crustacea | 2.43-4.01mg/l | 4 | | (ECx) 48h | Fish | 0.26mg/L | 5 | | int Test Duration (hr) | Species | Value | Source | | Not Available | Not Available | Not
Available | Not
Availab | | ii (| 48h 96h ECx) 72h int Test Duration (hr) 48h (ECx) 48h int Test Duration (hr) Not Available if from 1. IUCLID Toxicity Data 2. Europe | 48h Crustacea 96h Fish Algae or other aquatic plants int Test Duration (hr) Species 48h Crustacea (ECx) 48h Fish int Test Duration (hr) Species Not Available Not Available | 48h Crustacea 2.9mg/l 96h Fish 2.4mg/l ECx) 72h Algae or other aquatic plants 0.002mg/l Int Test Duration (hr) Species Value 48h Crustacea 2.43-4.01mg/l ECx) 48h Fish 0.26mg/L Int Test Duration (hr) Species Value Int Test Duration (hr) Species Value Int Not Available Not Available Int Not Available Not Available Not Available Int | ### DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------------|-------------------------|------------------| | sodium hydroxide | LOW | LOW | | lauryldimethylamine oxide | LOW | LOW | | water | LOW | LOW | ### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---------------------------|------------------------| | sodium hydroxide | LOW (LogKOW = -3.8796) | | lauryldimethylamine oxide | HIGH (LogKOW = 4.673) | ## Mobility in soil | • | | |---------------------------|-------------------| | Ingredient | Mobility | | sodium hydroxide | LOW (KOC = 14.3) | | lauryldimethylamine oxide | LOW (KOC = 18660) | # **SECTION 13 Disposal considerations** # Waste treatment methods ► Recycle wherever possible. Product / Packaging disposal - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ► Treat and neutralise at an approved treatment plant. - Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). • Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. # **SECTION 14 Transport information** ### **Labels Required** Version No: 4.1 # **NV Chemicals Chlorinated Detergent** Issue Date: 23/12/2022 Print Date: 14/07/2023 HAZCHEM 2X # Land transport (ADG) | zana tranoport (7120) | | | |------------------------------|--|--| | UN number or ID number | 3266 | | | UN proper shipping name | CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S. (contains sodium hydroxide) | | | Transport hazard class(es) | Class 8 Subsidiary risk Not Applicable | | | Packing group | П | | | Environmental hazard | Not Applicable | | | Special precautions for user | Special provisions 274 Limited quantity 1 L | | ### Air transport (ICAO-IATA / DGR) | r transport (ICAO-IATA / DGF | 7 | | | | |------------------------------|--|----------------|---------|--| | UN number | 3266 | | | | | UN proper shipping name | Corrosive liquid, basic, inorganic, n.o.s. * (contains sodium hydroxide) | | | | | Transport hazard class(es) | ICAO/IATA Class | 8 | | | | | ICAO / IATA Subrisk | Not Applicable | | | | | ERG Code | 8L | | | | Packing group | II . | | | | | Environmental hazard | Not Applicable | | | | | Special precautions for user | Special provisions | | A3 A803 | | | | Cargo Only Packing Instructions | | 855 | | | | Cargo Only Maximum Qty / Pack | | 30 L | | | | Passenger and Cargo Packing Instructions | | 851 | | | |
Passenger and Cargo Maximum Qty / Pack | | 1 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y840 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 0.5 L | | # Sea transport (IMDG-Code / GGVSee) | UN number | 3266 | | | |------------------------------|--|--|--| | UN proper shipping name | CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S. (contains sodium hydroxide) | | | | Transport hazard class(es) | IMDG Class 8 IMDG Subrisk Not Applicable | | | | Packing group | II | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number F-A, S-B Special provisions 274 Limited Quantities 1 L | | | # Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-----------------------------|---------------| | sodium hydroxide | Not Available | | sodium hypochlorite | Not Available | | sodium xylenesulfonate | Not Available | | lauryldimethylamine oxide | Not Available | | sodium lauryl ether sulfate | Not Available | | water | Not Available | Chemwatch: 23-5749 Version No: 4.1 Page **15** of **16** ### **NV Chemicals Chlorinated Detergent** Issue Date: **23/12/2022**Print Date: **14/07/2023** ### Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |-----------------------------|---------------| | sodium hydroxide | Not Available | | sodium hypochlorite | Not Available | | sodium xylenesulfonate | Not Available | | lauryldimethylamine oxide | Not Available | | sodium lauryl ether sulfate | Not Available | | water | Not Available | ### **SECTION 15 Regulatory information** ### Safety, health and environmental regulations / legislation specific for the substance or mixture # sodium hydroxide is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$ ### sodium hypochlorite is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic ### sodium xylenesulfonate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) # lauryldimethylamine oxide is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) ### sodium lauryl ether sulfate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) # water is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) ### **National Inventory Status** | National Inventory | Status | | |--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (sodium hydroxide; sodium hypochlorite; sodium xylenesulfonate; lauryldimethylamine oxide; sodium lauryl ether sulfate; water) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (lauryldimethylamine oxide; sodium lauryl ether sulfate) | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | ### **SECTION 16 Other information** | Revision Date | 23/12/2022 | |---------------|------------| | Initial Date | 04/05/2010 | ### **SDS Version Summary** | Version | Date of Update | Sections Updated | | |---------|----------------|--|--| | 3.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | | | 4.1 | 23/12/2022 | Classification review due to GHS Revision change. | | ### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification Chemwatch: 23-5749 Page **16** of **16** Issue Date: 23/12/2022 Version No: 4.1 Print Date: 14/07/2023 ### **NV Chemicals Chlorinated Detergent** committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC - TWA: Permissible Concentration-Time Weighted Average PC - STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances ### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.