NV Chemicals Ox-Bleach Powder N.V. Chemicals (Aust) P/L Chemwatch: 26-1318 Version No: 5.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements #### Chemwatch Hazard Alert Code: 3 Issue Date: 23/12/2022 Print Date: 14/07/2023 L.GHS.AUS.EN.E #### SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | NV Chemicals Ox-Bleach Powder | |-------------------------------|-------------------------------| | Chemical Name | Not Applicable | | Synonyms | Oxygen Powder Bleach | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Laundry brightener used on whites and colours. #### Details of the manufacturer or supplier of the safety data sheet | Registered company name | N.V. Chemicals (Aust) P/L | |-------------------------|---| | Address | 24 Lisa Place Coolaroo VIC 3048 Australia | | Telephone | +61 3 9351 1100 | | Fax | +61 3 9351 1077 | | Website | http://www.nvchemicals.com.au/ | | Email | info@nvchemicals.com.au | #### Emergency telephone number | Association / Organisation | N.V.Chemicals(Aust) P/L | |-----------------------------------|-------------------------| | Emergency telephone numbers | 0411 387 097 | | Other emergency telephone numbers | Not Available | #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture ### HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. #### Chemwatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 0 | | | | Toxicity | 2 | | 0 = Minimum | | Body Contact | 3 | - : | 1 = Low | | Reactivity | 0 | | 2 = Moderate | | Chronic | 0 | i | 3 = High
4 = Extreme | | Poisons Schedule S5 | | |-------------------------------|--| | Classification ^[1] | Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 1, Acute Toxicity (Inhalation) Category 4, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | Issue Date: 23/12/2022 Print Date: 14/07/2023 #### Label elements #### Hazard pictogram(s) Signal word Danger #### Hazard statement(s) | H302 | Harmful if swallowed. | |------|-----------------------------------| | H315 | Causes skin irritation. | | H318 | Causes serious eye damage. | | H332 | Harmful if inhaled. | | H335 | May cause respiratory irritation. | #### Precautionary statement(s) Prevention | P271 | Use only outdoors or in a well-ventilated area. | | |------|---|--| | P280 | P280 Wear protective gloves, protective clothing, eye protection and face protection. | | | P261 | Avoid breathing dust/fumes. | | | P264 | P264 Wash all exposed external body areas thoroughly after handling. | | | P270 | Do not eat, drink or smoke when using this product. | | #### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | |---|--|--| | P310 Immediately call a POISON CENTER/doctor/physician/first aider. | | | | P301+P312 | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell. | | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | | P304+P340 | P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | P330 | Rinse mouth. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | | | | #### Precautionary statement(s) Storage | · · · · · · · · · · · · · · · · · · · | | |---------------------------------------|--| | P405 | Store locked up. | | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|---|--------------------------------| | 497-19-8 | 30-60 | sodium carbonate | | 15630-89-4 | 10-30 | sodium percarbonate | | 7757-82-6 | 10-30 | sodium sulfate | | 25155-30-0 | <10 | sodium dodecylbenzenesulfonate | | Not Available | <1 | optical brightener | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | #### **SECTION 4 First aid measures** #### Description of first aid measures **Eye Contact** If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - Transport to hospital or doctor without delay. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Chemwatch: 26-1318 Page 3 of 12 Issue Date: 23/12/2022 Version No: 5.1 Print Date: 14/07/2023 #### **NV Chemicals Ox-Bleach Powder** | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | |--------------|---| | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. #### **SECTION 5 Firefighting measures** #### **Extinguishing media** - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. #### Special hazards arising from the substrate or mixture | Fire Incompatibility | None known | | | |-------------------------|--|--|--| | Advice for firefighters | | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from
entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | | | Fire/Explosion Hazard | Non combustible. Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: carbon monoxide (CO) carbon dioxide (CO2) sulfur oxides (SOx) | | | | HAZCHEM | Not Applicable | | | #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | methods and material for conti | annion and oldaring ap | |--------------------------------|---| | Minor Spills | Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety glasses. Use dry clean up procedures and avoid generating dust. Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). Do NOT use air hoses for cleaning Place spilled material in clean, dry, sealable, labelled container. | | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment and dust respirator. Prevent spillage from entering drains, sewers or water courses. Recover product wherever possible. Avoid generating dust. Sweep / shovel up. If required, wet with water to prevent dusting. Put residues in labelled plastic bags or other containers for disposal. Wash area down with large quantity of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. | Issue Date: 23/12/2022 Print Date: 14/07/2023 Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling - Limit all unnecessary personal contact. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area - Avoid contact with incompatible materials. - ► When handling, **DO NOT** eat, drink or smoke - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. #### Other information Safe handling - Store in original containers. Keep containers securely sealed. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities #### Suitable container - DO NOT use aluminium or galvanised containers - Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks. #### Storage incompatibility - In presence of moisture, the material is corrosive to aluminium, zinc and tin producing highly flammable hydrogen gas. - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. - Avoid contact with copper, aluminium and their alloys. #### SECTION 8 Exposure controls / personal protection #### **Control parameters** Occupational Exposure Limits (OEL) #### INGREDIENT DATA Not Available #### Emergency Limits | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------------------------|-----------|-----------|-----------| | sodium carbonate | 7.6 mg/m3 | 83 mg/m3 | 500 mg/m3 | | sodium sulfate | 9.8 mg/m3 | 110 mg/m3 | 650 mg/m3 | | sodium
dodecylbenzenesulfonate | 2.1 mg/m3 | 23 mg/m3 | 87 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |-----------------------------------|---------------|---------------| | sodium carbonate | Not Available | Not Available | | sodium percarbonate | Not Available | Not Available | | sodium sulfate | Not Available | Not Available | | sodium
dodecylbenzenesulfonate | Not Available | Not Available | #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |-----------------------------------|---|----------------------------------| | sodium carbonate | E | ≤ 0.01 mg/m³ | | sodium percarbonate | E | ≤ 0.01 mg/m³ | | sodium sulfate | E | ≤ 0.01 mg/m³ | | sodium
dodecylbenzenesulfonate | Е | ≤ 0.01 mg/m³ | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the | | #### Notes Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. #### MATERIAL DATA None assigned. Refer to individual constituents. #### **Exposure controls** ### Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically #### **NV Chemicals Ox-Bleach Powder** Issue Date: 23/12/2022 Print Date: 14/07/2023 "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air) | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |---|------------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood - local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be
adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Individual protection measures, such as personal protective equipment ### Eye and face protection - Safety glasses with side shields. - Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. #### Skin protection See Hand protection below - ► Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber ## Hands/feet protection Body protection ### See Other protection below #### Other protection - Overalls. - P.V.C apron. - Barrier cream. - Skin cleansing cream. - ► Eye wash unit. #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-* NV Chemicals Ox-Bleach Powder | Material | CPI | |----------------|-----| | NATURAL RUBBER | A | | NITRILE | Α | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or bydrogen cycnide(HCN), B3 = Acid gas or bydrogen cycnide(HCN), E = Sulfur hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Chemwatch: 26-1318 Version No: 5.1 Page 6 of 12 **NV Chemicals Ox-Bleach Powder** Issue Date: **23/12/2022**Print Date: **14/07/2023** #### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | White free flowing alkaline powder; soluble in water. | | | |--|---|---|----------------| | Physical state | Divided Solid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Applicable | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** #### Information on toxicological effects Inhalation of dusts, generated by the material, during the course of normal handling, may be harmful. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Symptoms of sodium carbonate inhalation may include coughing, sore throat, and laboured breathing. Severe or continued inhalation exposure may cause pulmonary oedema (lung damage). Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Hydrogen peroxide may cause blistering and bleeding from the throat and stomach. Ingested hydrogen peroxide may evolve large quantities of oxygen which could hyper-distend the gastro-intestinal tract and may cause internal bleeding Ingestion of large amounts of hydrogen peroxide causes chest and stomach pain, loss of consciousness, and motor disorders in humans and has caused mortality in experimental animals. Ingestion of hydrogen peroxide containing/ generating materials may cause nausea, vomiting and, possibly, internal bleeding. Rapid evolution of oxygen in the acid environment of the stomach (up to 10 times the volume of the ingested solution) may result in severe organ damage. Large doses are presumed to produce gastritis and oesophagitis. Cases of rupture of the colon, proctitis and ulcerative colitis have been reported following hydrogen peroxide enemas. Powders and tablets that generate hydrogen peroxide, such as Oxone (KHSO5), have caused oral and oesophageal burns when ingested. Large amounts of hydrogen peroxide taken orally by humans has caused apnea, dizziness, headache, tremors weakness or numbness in the extremities, convulsions, loss of consciousness and shock. Hydrogen peroxide concentrate is caustic and should not be tasted undiluted. Rats receiving 2.5% hydrogen peroxide (equivalent to approximately 3.5 g/kg/day) in their drinking water died within 43 days. Cases of rupture of the colon, inflammation of the anus or rectum, and ulcerative colitis have been reported following hydrogen peroxide enemas In five persons who accidentally drank about 50 mL of a 33% hydrogen peroxide solution, symptoms included stomach and chest pain, retention of breath, foaming at the mouth, and loss of consciousness. Later, motor and sensory disorders, fever, microhaemorrhages and moderate leucocytosis were noted. All recovered completely within 2-3 weeks. ### Ingestion Inhaled Chemwatch: 26-1318 Page 7 of 12 Version No: 5.1 Issue Date: 23/12/2022 Print Date: 14/07/2023 **NV Chemicals Ox-Bleach Powder** The material produces mild skin irritation;
evidence exists, or practical experience predicts, that the material either - produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or - produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. #### Skin Contact Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Open cuts, abraded or irritated skin should not be exposed to this material Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Contact with concentrated solutions of sodium carbonate may cause tissue damage "soda ulcers" Eve When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Alkaline salts may be intensely irritating to the eyes and precautions should be taken to ensure direct eye contact is avoided. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Chronic Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray. Chronic severe inhalation exposure to sodium carbonate may result in perforation of the nasal septum and serious pulmonary oedema (lung damage). Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. | NV Chemicals Ox-Bleach | TOXICITY | IRRITATION | |--------------------------------|--|--| | Powder | Not Available | Not Available | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >2000 mg/kg ^[2] | Eye (rabbit): 100 mg/24h moderate | | | Oral (Rat) LD50: 2800 mg/kg ^[2] | Eye (rabbit): 100 mg/30s mild | | sodium carbonate | | Eye (rabbit): 50 mg SEVERE | | | | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (rabbit): 500 mg/24h mild | | | | Skin: no adverse effect observed (not irritating) $^{[1]}$ | | | TOXICITY | IRRITATION | | sodium percarbonate | Dermal (rabbit) LD50: >2000 mg/kg ^[1] | Not Available | | | Oral (Rat) LD50: 893 mg/kg ^[1] | | | | TOXICITY | IRRITATION | | sodium sulfate | Inhalation(Rat) LC50: >2.4 mg/l4h ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | Oral (Rat) LD50: >2000 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 0.25 mg/24hr-SEVERE | | | Inhalation(Rat) LC50: 0.31 mg/L4h ^[1] | Eye (rabbit): 1% - SEVERE | | sodium dodecylbenzenesulfonate | Oral (Rat) LD50: 438 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | dodecymenzenesunonate | | Skin (rabbit): 20 mg/24 hr-SEVERE | | | | Skin: adverse effect observed (corrosive) ^[1] | | | | | specified data extracted from RTECS - Register of Toxic Effect of chemical Substances Sodium carbonate has no or a low skin irritation potential but it is considered irritating to the eyes. Due to the alkaline properties an irritation of the respiratory tract is also possible. No valid animal data are available on repeated dose toxicity studies by oral, dermal, inhalation or by other routes for sodium carbonate. A #### SODIUM CARBONATE repeated dose inhalation study, which was not reported in sufficient detail, revealed local effects on the lungs which could be expected based on the alkaline nature of the compound. Under normal handling and use conditions neither the concentration of sodium in the blood nor the pH of the blood will be increased and therefore sodium carbonate is not expected to be systemically available in the body. It can be stated that the substance will neither reach the foetus nor reach male and female reproductive organs, which shows that there is no risk for developmental toxicity and no risk for toxicity to reproduction. This was confirmed by a developmental study with rabbits, rats and mice. An in vitro mutagenicity test with bacteria was negative and based on the structure of sodium carbonate no genotoxic effects are expected. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. ### **SODIUM PERCARBONATE** No significant acute toxicological data identified in literature search. For sodium percarbonate: for sodium carbonate: Sodium percarbonate is an inorganic, water soluble solid of relatively low molecular weight. Dermal absorption is assumed to be low due to the hydrophilic character and the ionic structure of the substance. When sodium percarbonate is getting into contact with body fluids it will dissociate into hydrogen peroxide, carbonate and sodium ions which are all naturally present in the human body. For hydrogen peroxide a high Chemwatch: 26-1318 Page 8 of 12 Issue Date: 23/12/2022 Version No: 5.1 Print Date: 14/07/2023 NV Chemicals Ox-Bleach Powder degradation capacity is present in the blood and tissues, making it unlikely that hydrogen peroxide is systemically available. As carbonate is a part of the natural buffer systems in the organism it is unlikely that it is absorbed through sodium percarbonate exposure in amounts that would disturb the normal acid/base balance of the body. Similarly for sodium percarbonate exposure is not expected to contribute significantly to the sodium load of the body. The mode of action is characterized by the local irritation potential in particular to mucous membranes. No systemic effects are anticipated because it is unlikely that the substance is systemically available Acute oral LD50 values ranged between 1034 and 2200 mg/kg bw, while the acute dermal LD50 was > 2000 mg/kg bw. The existing animal data on acute toxicity show that sodium percarbonate has a local effect and that systemic effects are not to be expected. In animal tests a slight irritating effect on the skin was reported for solid sodium percarbonate and it was highly irritating to the rabbit eye (not rinsed). Sodium percarbonate did not have sensitising properties in a test with guinea pigs. The acute studies indicate that most of the acute and local effects can be explained by the release of hydrogen peroxide. Although a repeated dose study is not available for sodium percarbonate, effects can be predicted based on the release of hydrogen peroxide. carbonate and sodium. As it is expected that repeated dose toxicity of sodium percarbonate will mainly be mediated by hydrogen peroxide, no observed adverse effect levels can be defined on the basis of its hydrogen peroxide content. Based on the 90-day drinking water study according to OECD guidelines and GLP with hydrogen peroxide and catalase deficient mice, the predicted NOAEL of sodium percarbonate would be 308 ppm (81 to 115 mg/kg bw/day for males and females, respectively). Data on the mutagenicity will be similar to those of hydrogen peroxide due to the release of hydrogen peroxide in aqueous media. The available studies on hydrogen peroxide, most of them, in particular the in vivo studies, were performed according to OECD guidelines and GLP, are not in support of significant genotoxicity/mutagenicity under in vivo conditions. Therefore sodium percarbonate is also unlikely to have any in vivo genotoxic potential. Carcinogenicity studies with animals and sodium percarbonate are not available. The only component that could give rise to some concerns with regard to this endpoint is hydrogen peroxide. A local carcinogenic effect was observed in the duodenum of a catalase-deficient mouse strain administered 0.4 % hydrogen peroxide in drinking water. Although an underlying genotoxic mechanism cannot be excluded, the weight of evidence at this time does not suggest that the carcinogenic properties of hydrogen peroxide should be regarded as practically significant. Neither an animal study on toxicity to reproduction nor a study on developmental toxicity is available for sodium percarbonate. A developmental toxicity study with sodium carbonate, which was well documented and meets basic scientific principles, revealed no substance related foetotoxic, embryotoxic or teratogenic effects. From the nature of the substance it is to be anticipated that neither sodium percarbonate nor hydrogen peroxide and sodium carbonate will be systemically available under human exposure conditions and are thus unlikely to reach the gonads and the developing embryo or fetus. Therefore the substance is unlikely to have any relevant potential for toxicity to reproduction or developmental toxicity Equivocal Tumorigen by RTECS criteria. Reproductive effector in mice. for sodium sulfate: Sulfate (and sodium) ions are important constituents of the mammalian body and of natural foodstuffs and there is
a considerable daily turnover of both ions (several grams/day expressed as sodium sulfate). Near-complete absorption of dietary sulfates may occur at low concentration, depending on the counter-ion, but absorption capacity can be saturated at higher artificial dosages resulting in cathartic effects. Absorption through skin can probably be ignored since sodium sulfate is fully ionised in solution. One source suggests that very high levels of sulfate in urine may occur due to absorption from dust inhalation. At dietary levels, excretion is mainly in the urine. Sulfates are found in all body cells, with highest concentrations in connective tissues, bone and cartilage. Sulfates play a role in several important metabolic pathways, including those involved in detoxification processes. The acute toxicity (LD50) of sodium sulfate has not been reliably established but is probably far in excess of 5000 mg/kg. In an inhalation study with an aerosol, no adverse effects were found at 10 mg/m3. Also human data indicate a very low acute toxicity of sodium sulfate. Human clinical experience indicates that very high oral doses of sodium sulfate, 300 mg/kg bw up to 20 grams for an adult, are well tolerated, except from (intentionally) causing severe diarrhoea. WHO/FAO did not set an ADI for sodium sulfate. There is no data on acute dermal toxicity, but this is probably of no concern because of total ionisation in solution. Sodium sulfate is not irritating to the skin and slightly irritating to the eyes. Respiratory irritation has never been reported. Based on wide practical experience with sodium sulfate, in combination with the natural occurrence of sulfate in the body, sensitising effects are highly No suitable dermal and inhalation repeated-dose toxicity studies are available. Valid oral repeated dose toxicity studies with 21, 28 and 35 day studies in hens and pigs are available. Toxicity was confined to changes in bodyweight, water and feed intake and diarrhoea. These changes occurred only at very high doses of sodium sulfate. In ruminants, high concentrations of sulfate in food may result in the formation of toxic amounts of sulfites by bacterial reduction the rumen, leading to poly-encephalomalacia. The available data do not allow the derivation of a NOAEL. Based on available consumer data, a daily dose of around 25 mg/kg/day is well tolerated by humans. There are no data on in vitro and in vivo genotoxicity, apart from a negative Ames test. There is no valid oral carcinogenicity study. Limited data from experimental studies support the notion that a substance that is abundantly present in and essential to the body is unlikely to be carcinogenic. Limited data of poor validity did not provide an indication of toxicity to reproduction. Linear alkylbenzene sulfonates (LAS) are classified as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) according to CESIO (CESIO 2000). LAS are not included in Annex 1 of list of dangerous substances of Council Directive Linear alkylbenzene sulfonic acids (LABS) are strong acids (pKa<2) are classified as corrosive (R34) Branched materials exhibit comparable toxicity to linear species. Acute toxicity: The available data indicate minimal to moderate toxicity, with LD50 values ranging from 500 to 2000 mg/kg body weight (bw). Acute inhalation data also indicate a lack of significant toxicity. Available dermal exposure data also shows a lack of significant toxicity. LAS are readily absorbed by the gastrointestinal tract after oral administration in animals. LAS are not readily absorbed through the skin . The bulk is metabolised in the liver to sulfophenylic carboxyl acids. The metabolites are excreted primarily via the urine and faeces. The main urinary metabolites in rats are sulfophenyl butanoic acid and sulfophenyl pentanoic acid. Accumulation of LAS or its main metabolites has not been established in any organ after repeated oral ingestion. No serious injuries or fatalities in man have been reported following accidental ingestion of LAS-containing detergent. The main clinical signs observed after oral administration to rats of doses near or greater than the LD50 values consisted of reduced voluntary activity, diarrhoea, weakness etc. Death usually occurred within 24 hours of administration. Rats appear to be more sensitive to LAS than mice. LAS and branched alkylbenzene sulfonates may cause irritation of the eyes, skin and mucous membranes. LAS are relatively more irritating to the skin than the corresponding branched alkylbenzene sulfonates. The potential of LAS to irritate the skin depends on the concentration applied. LAS have been classified as irritating to skin at concentrations above 20% according to EU-criteria. Human skin can tolerate contact with solution of up to 1% LAS for 24 hours resulting in only mild irritation. Application of > 5% LAS to the eyes of rabbits produced irritation. Concentration of < 0.1% LAS produced mild to no irritation. Skin sensitization was not seen in 2,294 volunteers exposed to LAS or in 17,887 exposed to formulations of LAS. Repeat dose toxicity: A feeding study indicated that LAS, when administered for 2 years at extremely high levels (0.5%) in the diets to rats, produced no adverse effects on growth, health or feed efficiency. Genotoxicity: The mutagenic potential of LAS was tested using Salmonella typhimurium strains, using Ames test. In these studies, LAS was not mutagenic. The available long-term studies are inadequate for evaluating the carcinogenic potential of LAS in laboratory animals. The studies available (oral administration to rats and mice) do not show any evidence of carcinogenicity. Reproductive toxicity: In general no specific effect of LAS on reproductive processes has been seen, although dosages causing maternal toxicity may also induce some effects on reproduction. No teratogenic effects attributed to LAS exposure have been observed. Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Torben Madsen et al: Miljoministeriet (Danish Environmental Protection Agency) For aromatic sulfonic acids #### SODIUM DODECYLBENZENESULFONATE SODIUM SULFATE Chemwatch: **26-1318**Version No: **5.1** ## Page 9 of 12 NV Chemicals Ox-Bleach Powder Issue Date: 23/12/2022 Print Date: 14/07/2023 Aromatic sulfonic acids are very corrosive as was demonstrated in skin and eye irritation studies, in the acute oral studies, and in the single repeated dose oral study Health records from industrial manufacturing exposure, including manufacturing plant book of injuries and a physician report, show toluene-4-sulphonic acid (as handled in manufacturing plants; i.e., a 65% aqueous solution with < 5% free sulphuric acid) is an irritant to the eye and skin. #### Sensitisation: There is a single, key study for sensitization of the aromatic sulphonic acids. None of the tested animals showed positive responses in a, well documented, GLP guinea pig sensitization study with toluene-4-sulphonic acid (CAS No. 104-15-4). The test substance can be considered a non-sensitizer in guinea pigs as none of the test animals showed a positive response to combined intradermal and topical induction followed by topical challenge. #### Repeat dose toxicity: A GLP guideline study with p-toluenesulphonic acid (CAS No. 104-15-4) reported no adverse effects to male and female rats exposed orally for 28 days. The highest dose was 500 mg/kg bw/day (>490 mg/kg bw/day based on >98% active ingredient). Therefore the NOAEL was set at 500 mg/kg bw/day. #### Toxicity to reproduction: No fertility studies are reported for the aromatic sulphonic acids. There are however studies for the chemically related hydrotrope substances that looked at reproductive organs and development of offspring. Hydrotropes are the salt form of the sulphonic acids and therefore are used as read-across for this endpoint. The 90-day oral rat and oral mouse studies and the 2-year chronic dermal rat and mouse studies with the closely related compound sodium xylene sulfonate (CAS No. 1300-72-7) included examination of sex organs of both sexes. No treatment related effects on reproductive organs were reported at doses roughly equivalent to those in the developmental toxicity study. he NOAEL for both maternal and foetal toxicity was the highest dose tested - 3000 mg/kg bw /day which is equivalent to 936 mg active ingredient per kilogram body weight per day. The conclusion of the study was no indications of developmental toxicity including teratogenesis. Genetic toxicity: There is a fully documented, GLP Guideline (OECD 471) Ames Test and a fully documented, GLP Guideline (OECD 473) Chromosome Aberration Test for one of the aromatic sulphonic acids, p-toluenesulphonic acid (CAS No. 104-15-4). Both tests were conducted with and without metabolic activation. The Ames test exposed up to 5000 micrograms/plate and the chromosome aberration test exposed up to 1902 micrograms per liter of the test substance. These studies conclude the substance is neither mutagenic norcytotoxic. There is an additional, published report of an Ames Test for another of the aromatic sulphonic acids, benzenesulfonic acid (CAS No. 98-11-3). Exposures up to 10,000 micrograms/plate were done with and without metabolic activation. The conclusion is the same as for the p-toluenesulphonic acid; that is, not mutagenic and not cytotoxic. There are no in vivo mutagenicity studies for the aromatic sulphonic acids, but there are two in vivo mouse micronucleus studies for the related hydrotropes – sodium cumene sulfonate (CAS 28348-53-0) and calcium xylene sulfonate (CAS 28088-63-3). Both are GLP-compliant Guideline mouse micronucleus studies with full documentation. Both studies conclude the test substances were not mutagenic in these assavs. Disulfonic acids have not been the subject of concern. #### Carcinogenicity: There are no
carcinogenicity studies for the aromatic sulphonic acids Two hydrotrope studies involve 2-year rat and mouse dermal exposures conducted under GLP. Up to 240 mg (rats) and 727 mg (mice) sodium xylenesulfonate/kg body weight in 50% ethanol were dosed 5 days per week for 104 weeks. There were no treatment related incidences of mononuclear cell leukenia, neoplasms, or nonneoplatic lesions of the skin and other organs. The increased incidence of epidermal hyperplasia may have been related to exposure to the test substance. The NOAEL was reported as 240 mg/kg bw/day for rats and 727 mg/kg bw/day for mice. #### Elimination: The US EPA has evaluated the metabolism of analogs in in the sodium alkyl naphthalenesulfonate cluster (SANS), a group of sodium salts of naphthalenesulfonic acids. In a US EPA final rule for SANS, it was stated that "the 1- or 2-sulfonic acid sodium salt moieties on the naphthalene ring may provide a handle by which these compounds can be readily conjugated and eliminated." ## SODIUM CARBONATE & SODIUM SULFATE & SODIUM DODECYLBENZENESULFONATE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. | Acute Toxicity | ~ | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | X | Legend: X – Data either not available or does not fill the criteria for classification 🧪 – Data available to make classification #### **SECTION 12 Ecological information** #### Toxicity | NV Chemicals Ox-Bleach
Powder | Endpoint | Test Duration (hr) | Species | Value | Source | |----------------------------------|------------------|--------------------|-------------------------------|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | sodium carbonate | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | >800mg/l | 2 | | | EC50 | 48h | Crustacea | 156.6-298.9mg/l | 4 | | | EC50 | 96h | Algae or other aquatic plants | 242mg/l | 4 | | | NOEC(ECx) | 48h | Fish | 0.0106mg/l | 4 | | | LC50 | 96h | Fish | 300mg/l | 4 | Version No: **5.1** #### **NV Chemicals Ox-Bleach Powder** Issue Date: 23/12/2022 Print Date: 14/07/2023 | | Endpoint | Test Duration (hr) | | Species | | Value | Source | |-------------------------|--|--------------------|-----|---|--------|------------|--------| | sodium percarbonate | EC50 | 48h | | Crustacea | | 4.9mg/l | 1 | | | NOEC(ECx) | 48h | | Crustacea | | 2mg/l | 1 | | | Endpoint | Test Duration (hr) | S | pecies | Valu | е | Source | | | EC50 | 72h | А | Igae or other aquatic plants | 1206 | 5-1637mg/l | 4 | | sodium sulfate | EC50 | 48h | С | rustacea | 2564 | lmg/l | 1 | | | EC50 | 96h | А | Algae or other aquatic plants 1562.44mg/L | | 4 | | | | NOEC(ECx) | 1h | А | Algae or other aquatic plants 0.011mg/L | | 4 | | | | LC50 | 96h | F | ish | ca.50 | 6-790mg/l | 1 | | | Endpoint | Test Duration (hr) | Sp | ecies | Value | | Source | | | EC50 | 72h | Alg | ae or other aquatic plants | 21mg/l | | 2 | | sodium | EC50 | 48h | Cru | ustacea | 0.065- | 0.085mg/L | 4 | | dodecylbenzenesulfonate | EC50 | 96h | Alg | ae or other aquatic plants | 0.9mg/ | 'L | 5 | | | EC50(ECx) | 48h | Cru | ustacea | 0.065- | 0.085mg/L | 4 | | | LC50 | 96h | Fis | h | 0.59m | g/L | 4 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EF Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Bioconcentration Data 8. Vendor Data | | | | | | | DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------------|-------------------------|------------------| | sodium carbonate | LOW | LOW | | sodium sulfate | HIGH | HIGH | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | | |------------------|------------------------|--| | sodium carbonate | LOW (LogKOW = -0.4605) | | | sodium sulfate | LOW (LogKOW = -2.2002) | | #### Mobility in soil | Ingredient | Mobility | | |------------------|-------------------|--| | sodium carbonate | HIGH (KOC = 1) | | | sodium sulfate | LOW (KOC = 6.124) | | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - ▶ Recycle wherever possible or consult manufacturer for recycling options. - ▶ Consult State Land Waste Management Authority for disposal. - Treat and neutralise with dilute acid at an effluent treatment plant. - ▶ Recycle containers, otherwise dispose of in an authorised landfill. #### **SECTION 14 Transport information** #### **Labels Required** | Marine Pollutant | NO | | | | |------------------|----------------|--|--|--| | HAZCHEM | Not Applicable | | | | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | | |---------------------|---------------|--| | sodium carbonate | Not Available | | | sodium percarbonate | Not Available | | Chemwatch: **26-1318**Version No: **5.1** Page **11** of **12** #### **NV Chemicals Ox-Bleach Powder** Issue Date: 23/12/2022 Print Date: 14/07/2023 | Product name | Group | |-----------------------------------|---------------| | sodium sulfate | Not Available | | sodium
dodecylbenzenesulfonate | Not Available | #### Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |-----------------------------------|---------------| | sodium carbonate | Not Available | | sodium percarbonate | Not Available | | sodium sulfate | Not Available | | sodium
dodecylbenzenesulfonate | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### sodium carbonate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) Schedule 10 / Appendix C Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 #### sodium percarbonate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5 #### sodium sulfate is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### sodium dodecylbenzenesulfonate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) Australian Inventory of Industrial Chemicals (AIIC) #### **National Inventory Status** | National Inventory | Status | | |--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (sodium carbonate; sodium percarbonate; sodium sulfate; sodium dodecylbenzenesulfonate) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (sodium percarbonate) |
 | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | #### **SECTION 16 Other information** | Revision Date | 23/12/2022 | |---------------|------------| | Initial Date | 01/11/2009 | #### SDS Version Summary | Version | Date of Update | Sections Updated | |---------|----------------|--| | 4.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | | 5.1 | 23/12/2022 | Classification review due to GHS Revision change. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification Chemwatch: 26-1318 Page **12** of **12** Issue Date: 23/12/2022 Version No: 5.1 #### **NV Chemicals Ox-Bleach Powder** Print Date: 14/07/2023 committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC - TWA: Permissible Concentration-Time Weighted Average PC - STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.