NV Chemicals Polywash N.V. Chemicals (Aust) P/L Chemwatch: 4789-80 Version No: 4.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: 23/12/2022 Print Date: 14/07/2023 L.GHS.AUS.EN.E #### SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | NV Chemicals Polywash | | |-------------------------------|--|--| | Chemical Name | Not Applicable | | | Synonyms | aundry powder; detergent powder | | | Proper shipping name | CORROSIVE SOLID, BASIC, INORGANIC, N.O.S. (contains sodium metasilicate, pentahydrate) | | | Chemical formula | Not Applicable | | | Other means of identification | Not Available | | #### Relevant identified uses of the substance or mixture and uses advised against #### Details of the manufacturer or supplier of the safety data sheet | Registered company name | N.V. Chemicals (Aust) P/L | | |-------------------------|---|--| | Address | 24 Lisa Place Coolaroo VIC 3048 Australia | | | Telephone | +61 3 9351 1100 | | | Fax | +61 3 9351 1077 | | | Website | http://www.nvchemicals.com.au/ | | | Email | info@nvchemicals.com.au | | #### Emergency telephone number | Association / Organisation | N.V.Chemicals(Aust) P/L | |-----------------------------------|-------------------------| | Emergency telephone numbers | 0411 387 097 | | Other emergency telephone numbers | Not Available | #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture # HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. #### Chemwatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 0 | ! | | | Toxicity | 2 | | 0 = Minimum | | Body Contact | 3 | i | 1 = Low | | Reactivity | 1 | | 2 = Moderate | | Chronic | 0 | i | 3 = High
4 = Extreme | | Poisons | Schedule | | |---------|----------|--| | | | | S Classification [1] Corrosive to Metals Category 1, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1B, Serious Eye Damage/Eye Irritation Category 1, Acute Toxicity (Inhalation) Category 4, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 2 #### **NV Chemicals Polywash** Issue Date: 23/12/2022 Print Date: 14/07/2023 Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI #### Label elements ### Hazard pictogram(s) Signal word rd Dange #### Hazard statement(s) | H290 | May be corrosive to metals. | |------|--| | H302 | Harmful if swallowed. | | H314 | Causes severe skin burns and eye damage. | | H332 | Harmful if inhaled. | | H335 | May cause respiratory irritation. | | H411 | Toxic to aquatic life with long lasting effects. | #### Precautionary statement(s) Prevention | P260 | Do not breathe dust/fume. | | |------|--|--| | P264 | P264 Wash all exposed external body areas thoroughly after handling. | | | P271 | Use only outdoors or in a well-ventilated area. | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | P234 | Keep only in original packaging. | | | P270 | Do not eat, drink or smoke when using this product. | | | P273 | Avoid release to the environment. | | #### Precautionary statement(s) Response | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | | |--|--| | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | Immediately call a POISON CENTER/doctor/physician/first aider. | | | Wash contaminated clothing before reuse. | | | Absorb spillage to prevent material damage. | | | Collect spillage. | | | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell. | | | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | | | #### Precautionary statement(s) Storage | | P405 | Store locked up. | |--|-----------|--| | | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|---|-----------------------------------| | 497-19-8 | >60 | sodium carbonate | | 10213-79-3 | 10-30 | sodium metasilicate, pentahydrate | | Not Available | 10-30 ingredients determined to be non-hazardous | | | Legend: | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | # **SECTION 4 First aid measures** #### Description of first aid measures Eye Contact If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Chemwatch: 4789-80 Page 3 of 14 Issue Date: 23/12/2022 Print Date: 14/07/2023 Version No: 4.1 #### **NV Chemicals Polywash** | | Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | |--------------|---|--| | Skin Contact | If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. | | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) | | | Ingestion | For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.
 | #### Indication of any immediate medical attention and special treatment needed for phosphate salts intoxication: - All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred - Ingestion of large quantities of phosphate salts (over 1.0 grams for an adult) may cause an osmotic catharsis resulting in diarrhoea and probable abdominal cramps. Larger doses such as 4-8 grams will almost certainly cause these effects in everyone. In healthy individuals most of the ingested salt will be excreted in the faeces with the diarrhoea and, thus, not cause any systemic toxicity. Doses greater than 10 grams hypothetically may cause systemic toxicity. - ► Treatment should take into consideration both anionic and cation portion of the molecule. - All phosphate salts, except calcium salts, have a hypothetical risk of hypocalcaemia, so calcium levels should be monitored. For acute or short-term repeated exposures to highly alkaline materials: - Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxygen is given as indicated. - The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure INGESTION: Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. Supportive care involves the following: - Withhold oral feedings initially. - ▶ If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). SKIN AND EYE: Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] ## **SECTION 5 Firefighting measures** #### **Extinguishing media** - Water spray or fog. - Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. #### Special hazards arising from the substrate or mixture Fire Incompatibility Fire Fighting ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Use fire fighting procedures suitable for surrounding area Chemwatch: 4789-80 Page 4 of 14 Issue Date: 23/12/2022 Version No: 4.1 Print Date: 14/07/2023 #### **NV Chemicals Polywash** | | Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. Non combustible. Not considered a significant fire risk, however containers may burn. | |-----------------------|---| | Fire/Explosion Hazard | Decomposes on heating and produces toxic fumes of: carbon dioxide (CO2) carbon monoxide (CO) silicon dioxide (SiO2) phosphorus oxides (POx) May emit corrosive fumes. | | HAZCHEM | 2X | #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Methods and material for cont | | |-------------------------------|--| | Minor Spills | Environmental hazard - contain spillage. Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal. Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. | | Major Spills | Environmental hazard - contain spillage. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** Safe handling # Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Avoid contact with moisture. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Dbserve manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Porganic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some - other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. - Establish good housekeeping practices. - Figure Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. - Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area - Do not use air hoses for cleaning. - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used. - Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition. - Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national - Do not empty directly into flammable solvents or in the presence of flammable vapors. Chemwatch: 4789-80 Page 5 of 14 Issue Date: 23/12/2022 Print Date: 14/07/2023 Version No: 4.1 #### **NV Chemicals Polywash** The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. Do NOT cut, drill, grind or weld such containers. In addition ensure such activity is not
performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Other information Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ## Conditions for safe storage, including any incompatibilities ▶ DO NOT use aluminium or galvanised containers DO NOT store near acids, or oxidising agents No smoking, naked lights, heat or ignition sources. - Lined metal can, lined metal pail/ can. - ▶ Plastic pail. - Polyliner drum. - Packing as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. #### For low viscosity materials - ▶ Drums and jerricans must be of the non-removable head type. - Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): - Removable head packaging; - ► Cans with friction closures and - I low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. # Storage incompatibility Suitable container Sodium carbonate: - ▶ aqueous solutions are strong bases reacts violently with finely divided aluminium, fluorine, lithium, phosphorus pentoxide, sulfuric acid - reacts with fluorine gas at room temperature, generating incandescence. - is incompatible with organic anhydrides, acrylates, alcohols, aldehydes, alkylene oxides, substituted allyls, cellulose nitrate, cresols, caprolactam solution, epichlorohydrin, ethylene dichloride, isocyanates, ketones, glycols, nitrates, phenols, phosphorus pentoxide 2,4,6trinitrotoluene - forms explosive material with 2,4,5-trinitrotoluene and increases the thermal sensitivity of 2,4,6-trinitrotoluene (TNT) by decreasing the temperature of explosion from 297 deg. C to 218 deg. C - In presence of moisture, the material is corrosive to aluminium, zinc and tin producing highly flammable hydrogen gas. - Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates - Avoid contact with copper, aluminium and their alloys. #### SECTION 8 Exposure controls / personal protection #### **Control parameters** Occupational Exposure Limits (OEL) INGREDIENT DATA Not Available #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |--------------------------------------|-----------|----------|-----------| | sodium carbonate | 7.6 mg/m3 | 83 mg/m3 | 500 mg/m3 | | sodium metasilicate,
pentahydrate | 6.6 mg/m3 | 73 mg/m3 | 440 mg/m3 | | sodium metasilicate,
pentahydrate | 3.8 mg/m3 | 42 mg/m3 | 250 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--------------------------------------|---------------|---------------| | sodium carbonate | Not Available | Not Available | | sodium metasilicate,
pentahydrate | Not Available | Not Available | #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |--------------------------------------|--|----------------------------------| | sodium carbonate | E | ≤ 0.01 mg/m³ | | sodium metasilicate,
pentahydrate | Е | ≤ 0.01 mg/m³ | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | Chemwatch: 4789-80 Page 6 of 14 Version No: 4.1 #### **NV Chemicals Polywash** Issue Date: **23/12/2022**Print Date: **14/07/2023** Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can: - ▶ cause inflammation - b cause increased susceptibility to other irritants and infectious agents - I lead to permanent injury or dysfunction - permit greater absorption of hazardous substances and - acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure. It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace. At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum. NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - F Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: - (a): particle dust respirators, if necessary, combined with an absorption cartridge; - (b): filter respirators with absorption cartridge or canister of the right type; (c): fresh-air hoods or masks - ▶ Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |--|------------------------------| | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 ft/min) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 ft/min) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |---|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4:
Large hood or large air mass in motion | 4: Small bood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 ft/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Individual protection measures, such as personal protective equipment ## Eve and face protection - Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Full face shield may be required for supplementary but never for primary protection of eyes. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. #### Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber NOTE: #### Hands/feet protection - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to Chemwatch: 4789-80 Page 7 of 14 Version No: 4.1 #### **NV Chemicals Polywash** Issue Date: 23/12/2022 Print Date: 14/07/2023 manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact. - \cdot chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended #### **Body protection** See Other protection below #### Other protection - Overalls - PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - Eyewash unit. - ▶ Ensure there is ready access to a safety shower. #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: NV Chemicals Polywash | Material | СРІ | |----------------|-----| | NATURAL RUBBER | Α | | NITRILE | Α | - * CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted #### Respiratory protection Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | -AUS / Class1
P2 | - | | up to 50 | 1000 | - | -AUS / Class
1 P2 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | -2 P2 | | up to 100 | 10000 | - | -3 P2 | | 100+ | | | Airline** | - * Continuous Flow ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - · The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection - · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type Chemwatch: 4789-80 Version No: 4.1 Page 8 of 14 **NV Chemicals Polywash** Issue Date: 23/12/2022 Print Date: 14/07/2023 P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU) - \cdot Use approved positive flow mask if significant quantities of dust becomes airborne. - · Try to avoid creating dust conditions. #### **SECTION 9 Physical and chemical properties** | Appearance | Alkaline powder; soluble in water. | | | |--
------------------------------------|---|----------------| | •• | • | | | | Physical state | Divided Solid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** Inhaled Ingestion #### Information on toxicological effects Inhalation of dusts, generated by the material, during the course of normal handling, may be harmful. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours. Symptoms may include a tightness in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales. Symptoms of sodium carbonate inhalation may include coughing, sore throat, and laboured breathing. Severe or continued inhalation exposure may cause pulmonary oedema (lung damage). Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. #### those given 1 The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Accidental ingestion of the material may be damaging to the health of the individual. Inorganic polyphosphates are used extensively in domestic and industrial products. Rats fed 10% sodium trimetaphosphate for a month exhibited transient tubular necrosis; those given 10% sodium metaphosphate exhibited growth retardation; 10% sodium hexametaphosphate produced pale and swollen kidneys. Salts of this type appear to be hydrolysed in the bowel to produce phosphoric acid and systemic acidosis may result following absorption. Higher molecular weight species, absorbed from the alimentary canal, may produce hypocalcaemic tetany due to binding of ionised calcium by the absorbed phosphate. This is reported in at least one case following ingestion of sodium tripolyphosphate. Ingestion of anionic surfactants/ hydrotropes may produce diarrhoea, intestinal distension and occasional vomiting. Lethal doses in animals range from 1 to 5 gm/kg. Chemwatch: 4789-80 Page 9 of 14 Issue Date: 23/12/2022 Version No: 4.1 Print Date: 14/07/2023 **NV Chemicals Polywash** Anionic surfactants/ hydrotropes generally produce skin reactions following the removal of natural oils. The skin may appear red and may become sore. Papular dermatitis may also develop. Sensitive individuals may exhibit cracking, scaling and blistering. Skin Contact Open cuts, abraded or irritated skin should not be exposed to this material Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Contact with concentrated solutions of sodium carbonate may cause tissue damage "soda ulcers' The material can produce chemical burns following direct contact with the skin. # Eve Chronic the size of muscle fibres. The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Direct eye contact with some concentrated anionic surfactants/ hydrotropes produces corneal damage, in some cases severe. Low concentrations may produce immediate discomfort, conjunctival hyperaemia, and oedema of the corneal epithelium. Healing may take several days. Temporary clouding of the cornea may occur. Alkaline salts may be intensely irritating to the eyes and precautions should be taken to ensure direct eye contact is avoided. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals. In chronic animal studies inorganic polyphosphates produced growth inhibition, increased kidney weights (with calcium deposition and desquamation), bone decalcification, parathyroid hypertrophy and hyperplasia, inorganic phosphaturia, hepatic focal necrosis and alterations to Inorganic phosphates are not genotoxic in bacterial systems nor are they carcinogenic in rats. No reproductive or developmental toxicity was seen in studies using rats exposed to sodium hexametaphosphate or sodium trimetaphosphate. Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray. Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following. Chronic severe inhalation exposure to sodium carbonate may result in perforation of the nasal septum and serious pulmonary oedema (lung Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies. | NV Chemicals Polywash | TOXICITY | IRRITATION | | |--------------------------------------|--|--|--| | | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | | dermal (rat) LD50:
>2000 mg/kg ^[2] | Eye (rabbit): 100 mg/24h moderate | | | | Oral (Rat) LD50: 2800 mg/kg ^[2] | Eye (rabbit): 100 mg/30s mild | | | sodium carbonate | | Eye (rabbit): 50 mg SEVERE | | | | | Eye: adverse effect observed (irritating) ^[1] | | | | | Skin (rabbit): 500 mg/24h mild | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | TOXICITY | IRRITATION | | | sodium metasilicate,
pentahydrate | Oral (Rat) LD50: 1153 mg/kg ^[2] | Skin (human): 250 mg/24h SEVERE | | | | | Skin (rabbit): 250 mg/24h SEVERE | | | Legend: | Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | Branched materials exhibit comparable toxicity to linear species. Linear alkylbenzene sulfonates (LAS) are classified as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) according to CESIO (CESIO 2000). LAS are not included in Annex 1 of list of dangerous substances of Council Directive 67/548/EEC. Linear alkylbenzene sulfonic acids (LABS) are strong acids (pKa<2) are classified as corrosive (R34) **NV Chemicals Polywash** Acute toxicity: The available data indicate minimal to moderate toxicity, with LD50 values ranging from 500 to 2000 mg/kg body weight (bw). Acute inhalation data also indicate a lack of significant toxicity. Available dermal exposure data also shows a lack of significant toxicity. LAS are readily absorbed by the gastrointestinal tract after oral administration in animals. LAS are not readily absorbed through the skin. The bulk is metabolised in the liver to sulfophenylic carboxyl acids. The metabolites are excreted primarily via the urine and faeces. The main urinary metabolites in rats are sulfophenyl butanoic acid and sulfophenyl pentanoic acid. Accumulation of LAS or its main metabolites has not been established in any organ after repeated oral ingestion. No serious injuries or fatalities in man have been reported following accidental ingestion of LAS-containing detergent. The main clinical signs observed after oral administration to rats of doses near or greater than the LD50 values consisted of reduced voluntary activity, diarrhoea weakness etc. Death usually occurred within 24 hours of administration. Rats appear to be more sensitive to LAS than mice. LAS and branched alkylbenzene sulfonates may cause irritation of the eyes, skin and mucous membranes, LAS are relatively more irritating to the skin than the corresponding branched alkylbenzene sulfonates. The potential of LAS to irritate the skin depends on the concentration applied. LAS have been classified as irritating to skin at concentrations above 20% according to EU-criteria. Human skin can tolerate contact with solution of up to 1% LAS for 24 hours resulting in only mild irritation. Application of > 5% LAS to the eyes of rabbits produced irritation. Concentration of < 0.1% LAS produced mild to no irritation. Skin sensitization was not seen in 2,294 volunteers exposed to LAS or in 17,887 exposed to formulations of LAS. Chemwatch: **4789-80** Page **10** of **14**Version No: **4.1** #### **NV Chemicals Polywash** 2001. Torben Madsen et al: Miljoministeriet (Danish Environmental Protection Agency) Issue Date: **23/12/2022**Print Date: **14/07/2023** Repeat dose toxicity: A feeding study indicated that LAS, when administered for 2 years at extremely high levels (0.5%) in the diets to rats, produced no adverse effects on growth, health or feed efficiency. Genotoxicity: The mutagenic potential of LAS was tested using Salmonella typhimurium strains, using Ames test. In these studies, LAS was not mutagenic. The available long-term studies are inadequate for evaluating the carcinogenic potential of LAS in laboratory animals. The studies available (oral administration to rats and mice) do not show any evidence of carcinogenicity. Reproductive toxicity: In general no specific effect of LAS on reproductive processes has been seen, although dosages causing maternal toxicity may also induce some effects on reproduction. No teratogenic effects attributed to LAS exposure have been observed. Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, #### For aromatic sulfonic acids Aromatic sulfonic acids are very corrosive as was demonstrated in skin and eye irritation studies, in the acute oral studies, and in the single repeated dose oral study. Health records from industrial manufacturing exposure, including manufacturing plant book of injuries and a physician report, show toluene-4-sulphonic acid (as handled in manufacturing plants; i.e., a 65% aqueous solution with < 5% free sulphuric acid) is an irritant to the eye and skin. **Sensitisation:** There is a single, key study for sensitization of the aromatic sulphonic acids. None of the tested animals showed positive responses in a, well documented, GLP guinea pig sensitization study with toluene-4-sulphonic acid (CAS No. 104-15-4). The test substance can be considered a non-sensitizer in guinea pigs as none of the test animals showed a positive response to combined intradermal and topical induction followed by topical challenge. #### Repeat dose toxicity: A GLP guideline study with p-toluenesulphonic acid (CAS No. 104-15-4) reported no adverse effects to male and female rats exposed orally for 28 days. The highest dose was 500 mg/kg bw/day (>490 mg/kg bw/day based on >98% active ingredient). Therefore the NOAEL was set at 500 mg/kg bw/day. #### Toxicity to reproduction: No fertility studies are reported for the aromatic sulphonic acids. There are however studies for the chemically related hydrotrope substances that looked at reproductive organs and development of offspring. Hydrotropes are the salt form of the sulphonic acids and therefore are used as read-across for this endpoint. The 90-day oral rat and oral mouse studies and the 2-year chronic dermal rat and mouse studies with the closely related compound sodium xylene sulfonate (CAS No. 1300-72-7) included examination of sex organs of both sexes. No treatment related effects on reproductive organs were reported at doses roughly equivalent to those in the developmental toxicity study. he NOAEL for both maternal and foetal toxicity was the highest dose tested - 3000 mg/kg bw /day which is equivalent to 936 mg active ingredient per kilogram body weight per day. The conclusion of the study was no indications of developmental toxicity including teratogenesis. Genetic toxicity: There is a fully documented, GLP Guideline (OECD 471) Ames Test and a fully documented, GLP Guideline (OECD 473) Chromosome Aberration Test for one of the aromatic sulphonic acids, p-toluenesulphonic acid (CAS No. 104-15-4). Both tests were conducted with and without metabolic activation. The Ames test exposed up to 5000 micrograms/plate and the chromosome aberration test exposed up to 1902 micrograms per liter of the test substance. These studies conclude the substance is neither mutagenic norcytotoxic. There is an additional, published report of an Ames Test for another of the aromatic sulphonic acids, benzenesulfonic acid (CAS No. 98-11-3). Exposures up to 10,000 micrograms/plate were done with and without metabolic activation. The conclusion is the same as for the p-toluenesulphonic acid; that is, not mutagenic and not cytotoxic. There are no in vivo mutagenicity studies for the aromatic sulphonic acids, but there are two in vivo mouse micronucleus studies for the related hydrotropes – sodium cumene sulfonate (CAS 28348-53-0) and calcium xylene sulfonate (CAS 28088-63-3). Both are GLP-compliant Guideline mouse micronucleus studies with full documentation. Both studies conclude the test substances were not mutagenic in these assays. Disulfonic acids have not been the subject of concern. #### Carcinogenicity: There are no carcinogenicity studies for the aromatic sulphonic acids Two hydrotrope studies involve 2-year rat and mouse dermal exposures conducted under GLP. Up to 240 mg (rats) and 727 mg (mice) sodium xylenesulfonate/kg body weight in 50% ethanol were dosed 5 days per week for 104 weeks. There were no treatment related incidences of mononuclear cell leukenia, neoplasms, or nonneoplatic lesions of the skin and other organs. The increased incidence of epidermal hyperplasia may have been related to exposure to the test substance. The NOAEL was reported as 240 mg/kg bw/day for rats and 727 mg/kg bw/day for mice. #### . Elimination: The US EPA has evaluated the metabolism of analogs in in the sodium alkyl naphthalenesulfonate cluster (SANS), a group of sodium salts of naphthalenesulfonic acids . In a US EPA final rule for SANS, it was stated that "the 1- or 2-sulfonic acid sodium salt moieties on the naphthalene ring may provide a handle by which these compounds can be readily conjugated and eliminated." # sodium metasilicate anhydrous The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation. Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence). The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing
difficulties. #### for sodium carbonate: Sodium carbonate has no or a low skin irritation potential but it is considered irritating to the eyes. Due to the alkaline properties an irritation of the respiratory tract is also possible. # NV Chemicals Polywash & SODIUM CARBONATE SODIUM METASILICATE, PENTAHYDRATE No valid animal data are available on repeated dose toxicity studies by oral, dermal, inhalation or by other routes for sodium carbonate. A repeated dose inhalation study, which was not reported in sufficient detail, revealed local effects on the lungs which could be expected based on the alkaline nature of the compound. Under normal handling and use conditions neither the concentration of sodium in the blood nor the pH of the blood will be increased and therefore sodium carbonate is not expected to be systemically available in the body. It can be stated that the substance will neither reach the foetus nor reach male and female reproductive organs, which shows that there is no risk for developmental toxicity and no risk for toxicity to reproduction. This was confirmed by a developmental study with rabbits, rats and mice. An *in vitro* mutagenicity test with bacteria was negative and based on the structure of sodium carbonate no genotoxic effects are expected. # NV Chemicals Polywash & SODIUM CARBONATE & SODIUM METASILICATE, PENTAHYDRATE The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. Chemwatch: 4789-80 Version No: 4.1 #### Page 11 of 14 ### **NV Chemicals Polywash** Issue Date: 23/12/2022 Print Date: 14/07/2023 | Acute Toxicity | ✓ | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 🗶 – Data either not available or does not fill the criteria for classification 🥓 – Data available to make classification #### **SECTION 12 Ecological information** #### **Toxicity** | NV Chemicals Polywash | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------------------|------------------|--------------------|--|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | >800mg/l | 2 | | | EC50 | 48h | Crustacea | 156.6-298.9mg/ | 4 | | sodium carbonate | EC50 | 96h | Algae or other aquatic plants | 242mg/l | 4 | | | NOEC(ECx) | 48h | Fish | 0.0106mg/l | 4 | | | LC50 | 96h | Fish | 300mg/l | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 207mg/l | 2 | | sodium metasilicate, | EC50 | 48h | Crustacea 22.94-49.01m | | 4 | | pentahydrate | LC50 | 96h Fish | | 180mg/l | 1 | | | EC50(ECx) | 48h | Crustacea | 22.94-49.01mg/ | 4 | | Legend: | Ecotox databas | | CHA Registered Substances - Ecotoxicological Info
C Aquatic Hazard Assessment Data 6. NITE (Japan | | | On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Prevent, by any means available, spillage from entering drains or water courses. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------------|-------------------------|------------------| | sodium carbonate | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | | |------------------|------------------------|--| | sodium carbonate | LOW (LogKOW = -0.4605) | | #### Mobility in soil | Ingredient | Mobility | |------------------|----------------| | sodium carbonate | HIGH (KOC = 1) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - ► Reuse - ► Recycling - Disposal (if all else fails) #### Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - Recycle wherever possible. #### **NV Chemicals Polywash** Issue Date: 23/12/2022 Print Date: 14/07/2023 - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Treat and neutralise at an approved treatment plant. - Treatment should involve: Mixing or slurrying in water; Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 Transport information** #### **Labels Required** #### Marine Pollutant HAZCHEM 2X #### Land transport (ADG) | UN number or ID number | 3262 | | | |------------------------------|--|--|--| | UN proper shipping name | CORROSIVE SOLID, BASIC, INORGANIC, N.O.S. (contains sodium metasilicate, pentahydrate) | | | | Transport hazard class(es) | Class 8 Subsidiary risk Not Applicable | | | | Packing group | | | | | Environmental hazard | Environmentally hazardous | | | | Special precautions for user | Special provisions 223 274 Limited quantity 5 kg | | | #### Air transport (ICAO-IATA / DGR) | UN number | 3262 | | | | |------------------------------|--|---------------------------------------|----------------|--| | UN proper shipping name | Corrosive solid, basic, inorganic, n.o.s. * (contains sodium metasilicate, pentahydrate) | | | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | 8 Not Applicable 8L | | | | Packing group | | | | | | Environmental hazard | Environmentally hazardous | | | | | | Special provisions Cargo Only Packing Instructions | | A3 A803
864 | | | | Cargo Only Maximum | Qty / Pack | 100 kg | | | Special precautions for user | Passenger and Cargo | Packing Instructions | 860 | | | | Passenger and Cargo | Maximum Qty / Pack | 25 kg | | | | Passenger and Cargo | Limited Quantity Packing Instructions | Y845 | | | | Passenger and Cargo | Limited Maximum Qty / Pack | 5 kg | | #### Sea transport (IMDG-Code / GGVSee) | UN number | 3262 | | | | |------------------------------|--|--|--|--| | UN proper shipping name | CORROSIVE SOLI | CORROSIVE SOLID, BASIC, INORGANIC, N.O.S. (contains sodium metasilicate, pentahydrate) | | | | Transport hazard class(es) | IMDG Class 8 IMDG Subrisk Not Applicable | | | | | Packing group | III | | | | | Environmental hazard | Marine Pollutant | | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | | | | **NV Chemicals Polywash** Issue Date: 23/12/2022 Print Date:
14/07/2023 #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | | |--------------------------------------|---------------|--| | sodium carbonate | Not Available | | | sodium metasilicate,
pentahydrate | Not Available | | #### Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--------------------------------------|---------------| | sodium carbonate | Not Available | | sodium metasilicate,
pentahydrate | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### sodium carbonate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) Schedule 10 / Appendix C Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Australian Inventory of Industrial Chemicals (AIIC) Schedule 6 Schedule 5 sodium metasilicate, pentahydrate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - #### **National Inventory Status** | National Inventory | Status | |--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (sodium carbonate; sodium metasilicate, pentahydrate) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | #### **SECTION 16 Other information** | Revision Date | 23/12/2022 | |---------------|------------| | Initial Date | 01/11/2009 | #### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|--| | 3.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | | 4.1 | 23/12/2022 | Classification review due to GHS Revision change. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC - TWA: Permissible Concentration-Time Weighted Average PC - STEL: Permissible Concentration-Short Term Exposure Limit Chemwatch: 4789-80 Page 14 of 14 Issue Date: 23/12/2022 Version No: 4.1 Print Date: 14/07/2023 #### **NV Chemicals Polywash** IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit₀ IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.